UNIVERSITÀ DI BRESCIA - FACOLTÀ DI INGEGNERIA

Algebra e Geometria - 1º test - 19.11.10

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. Si considerino, al variare del parametro reale k, le matrici

$$A = \begin{pmatrix} k & 0 & 1 \\ k+1 & 1 & 0 \\ k & 1 & -k \end{pmatrix}, \quad B = \begin{pmatrix} k \\ 0 \\ k-2 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

Si determini al variare di $k \in \mathbb{R}$:

• il rango della matrice A;

• il rango della matrice A|B;

Risposta
$$k \neq 1$$
 $\rho(A|B) = 3$, $k = 1$ $\rho(A|B) = 2$ _______(pt.1)

- ullet i valori di k per cui il sistema AX=B è compatibile e, per tali valori, il numero delle soluzioni;
- posto k = 1 l'insieme S delle soluzioni di AX = B;

Risposta
$$S = \{(\alpha, -2\alpha, 1 - \alpha) \in \mathbb{R}^3 \mid \alpha \in \mathbb{R}\}$$
 (pt.2)

ESERCIZIO 2. Nello spazio vettoriale $M_2(\mathbb{R})$ si considerino

$$U = \left\{ \begin{pmatrix} x & y \\ z & t \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) \mid z = 0 \quad \text{e} \quad 2x + y - 2t = 0 \right\}, \qquad A_k = \begin{pmatrix} k - 2 & 2 \\ k + 1 & -2 \end{pmatrix},$$

dove k è un parametro reale. Al variare di $k \in \mathbb{R}$ si determinino:

• una base \mathcal{B} e la dimensione di U;

• i valori di k per cui la matrice A_k appartiene ad U.

Risposta
$$k = -1$$
 ______(pt.2)

ESERCIZIO 3. Nello spazio vettoriale $\mathbb{R}^4(\mathbb{R})$ si considerino i sottospazi $U = \mathcal{L}([(1,0,0,1),(-2,1,0,k-2),(-k,k,0,k)])$ e $W = \{(2\alpha + 2\gamma,0,-\alpha + 2\beta + 3\gamma,\alpha + \gamma) \in \mathbb{R}^4 \mid \alpha,\beta,\gamma \in \mathbb{R}\}$. Si determinino al variare di $k \in \mathbb{R}$

 $\bullet \;$ la dimensione di U e una sua base;

Risposta
$$k \neq 0$$
 e $k \neq 2$ dim $U = 3$, $\mathcal{B}_U = ((1,0,0,1), (-2,1,0,k-2), (-k,k,0,k)),$ $k = 0$ o $k = 2$ dim $(U) = 2$, $\mathcal{B}_U = ((1,0,0,1), (-2,1,0,k-2))$ (pt.3)

• una base ortonormale di W;

Risposta
$$\mathcal{B}_W = (0,0,1,0), (2/\sqrt{5},0,0,1/\sqrt{5})$$
 ______ (pt.2)

 $\bullet\,$ i valori di kper cui la somma U+Wrisulta diretta;

 \bullet il complemento ortogonale di W.

Risposta
$$W^{\perp} = \mathcal{L}((1,0,0,-2),(0,1,0,0))$$
 ______(pt.3)

ESERCIZIO 4. Si consideri la matrice

$$A_k = \begin{pmatrix} 1 & k & 0 \\ 0 & -1 & 0 \\ 2 & k & k \end{pmatrix},$$

dove k è un parametro reale. Si determinino, al variare di $k \in \mathbb{R}$:

 \bullet gli autovalori di A_k e le rispettive molteplicità algebriche e geometriche;

Lisposta
$$k \neq \pm 1$$
 $\lambda_1 = -1, \lambda_2 = 1, \lambda_3 = k, \quad a_{\lambda} = g_{\lambda} = 1$ $k = -1$ $a_{-1} = g_{-1} = 2, \ a_1 = g_1 = 1$ $k = 1$ $a_{-1} = g_{-1} = 1, \ a_1 = 2, \ g_1 = 1$ (pt.3)

• i valori di $k \in \mathbb{R}$ per cui A_k è diagonalizzabile;

Risposta
$$k \neq 1$$
 ______ (pt.2)

 $\bullet\,$ posto k=-1una matrice D diagonale simile ad A_{-1} e la matrice diagonalizzante P.

Risposta
$$D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, P = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
 (pt.3)

UNIVERSITÀ DI BRESCIA - FACOLTÀ DI INGEGNERIA

Algebra e Geometria - 1º test - 19.11.10

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. Si considerino, al variare del parametro reale k, le matrici

$$A = \begin{pmatrix} k & 0 & 1 \\ k+2 & 1 & 0 \\ 2k+2 & 1 & -k-1 \end{pmatrix}, \quad B = \begin{pmatrix} k+1 \\ 0 \\ k-1 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

Si determini al variare di $k \in \mathbb{R}$:

• il rango della matrice A;

• il rango della matrice A|B;

- ullet i valori di k per cui il sistema AX=B è compatibile e, per tali valori, il numero delle soluzioni;
- $\bullet\,$ posto k=0 l'insieme S delle soluzioni di AX=B;

Risposta
$$S = \{(\alpha, -2\alpha, 1) \in \mathbb{R}^3 \mid \alpha \in \mathbb{R}\}$$
 _______(pt.2)

ESERCIZIO 2. Nello spazio vettoriale $M_2(\mathbb{R})$ si considerino

$$U = \left\{ \begin{pmatrix} x & y \\ z & t \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) \mid y = 0 \quad \text{e} \quad 2x + z - 2t = 0 \right\}, \qquad A_k = \begin{pmatrix} k - 3 & k \\ 2 & -2 \end{pmatrix},$$

dove k è un parametro reale. Al variare di $k \in \mathbb{R}$ si determinino:

• una base \mathcal{B} e la dimensione di U;

Risposta
$$\mathcal{B} = \begin{pmatrix} 1 & 0 \\ -2 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 2 & 1 \end{pmatrix}$$
; dim $U = 2$ (pt.2)

 $\bullet\,$ i valori di k per cui la matrice A_k appartiene ad U.

Risposta
$$k=0$$
 ______(pt.2)

ESERCIZIO 3. Nello spazio vettoriale $\mathbb{R}^4(\mathbb{R})$ si considerino i sottospazi $U = \mathcal{L}([(1,0,0,1),(k-1,-k,0,-2),(-2,1,0,k-1)])$ e $W = \{(2\alpha+2\gamma,0,-\alpha+3\beta-2\gamma,\alpha+\gamma) \in \mathbb{R}^4 \mid \alpha,\beta,\gamma \in \mathbb{R}\}$. Si determinino al variare di $k \in \mathbb{R}$

 $\bullet \;$ la dimensione di Ue una sua base;

Risposta
$$k \neq \pm 1$$
 dim $U = 3$, $\mathcal{B}_U = ((1,0,0,1), (k-1,-k,0,-2), (-2,1,0,k-1)),$ $k = -1$ o $k = 1$ dim $U = 2$, $\mathcal{B}_U = ((1,0,0,1), (k-1,-k,0,-2))$ (pt.3)

• una base ortonormale di W;

Risposta
$$\mathcal{B}_W = ((0,0,1,0), (2/\sqrt{5},0,0,1/\sqrt{5}))$$
 _______(pt.2)

 $\bullet\,$ i valori di kper cui la somma U+Wrisulta diretta;

 \bullet il complemento ortogonale di W.

Risposta
$$W^{\perp} = \mathcal{L}((1,0,0,-2),(0,1,0,0))$$
 (pt.3)

ESERCIZIO 4. Si consideri la matrice

$$A_k = \begin{pmatrix} 0 & -1 & 0 \\ 0 & k+2 & 0 \\ 4 & k+2 & 2 \end{pmatrix},$$

dove k è un parametro reale. Si determinino, al variare di $k \in \mathbb{R}$:

• gli autovalori di A_k e le rispettive molteplicità algebriche e geometriche;

Risposta
$$k \neq -2$$
 e $k \neq 0$ $\lambda_1 = 0, \lambda_2 = 2, \lambda_3 = k + 2, \quad a_{\lambda} = g_{\lambda} = 1$ $k = 0$ $a_2 = g_2 = 2, \ a_0 = g_0 = 1$ $k = -2$ $a_2 = g_2 = 1, \ a_0 = 2, \ g_0 = 1$ (pt.3)

• i valori di $k \in \mathbb{R}$ per cui A_k è diagonalizzabile;

Risposta
$$k \neq -2$$
 ______(pt.2)

 $\bullet\,$ posto k=0una matrice D diagonale simile ad A_0 e la matrice diagonalizzante P.

Risposta
$$D = \begin{pmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix}, P = \begin{pmatrix} 1 & 0 & 1 \\ -2 & 0 & 0 \\ 0 & 1 & -2 \end{pmatrix}$$
 (pt.3)

UNIVERSITÀ DI BRESCIA - FACOLTÀ DI INGEGNERIA

Algebra e Geometria - 1º test - 19.11.10

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. Si considerino, al variare del parametro reale k, le matrici

$$A = \begin{pmatrix} k & 1 & 0 \\ k - 1 & 0 & 1 \\ k - 1 & 1 & 1 - k \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ k - 1 \\ k - 3 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

Si determini al variare di $k \in \mathbb{R}$:

• il rango della matrice A;

• il rango della matrice A|B;

ullet i valori di k per cui il sistema AX=B è compatibile e, per tali valori, il numero delle soluzioni;

• posto k=2 l'insieme S delle soluzioni di AX=B;

Risposta
$$S = \{(\alpha, -2\alpha, 1-\alpha) \in \mathbb{R}^3 \mid \alpha \in \mathbb{R}\}$$
 (pt.2)

ESERCIZIO 2. Nello spazio vettoriale $M_2(\mathbb{R})$ si considerino

$$U = \left\{ \begin{pmatrix} x & y \\ z & t \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) \mid z = 0 \quad \text{e} \quad 2x - y - 2t = 0 \right\}, \qquad A_k = \begin{pmatrix} -2 & 2 \\ k + 2 & k - 1 \end{pmatrix},$$

dove k è un parametro reale. Al variare di $k \in \mathbb{R}$ si determinino:

 $\bullet\,$ una base ${\mathcal B}$ e la dimensione di U;

Risposta
$$\mathcal{B} = \begin{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -2 \\ 0 & 1 \end{pmatrix} \end{pmatrix}; \dim U = 2$$
 (pt.2)

• i valori di k per cui la matrice A_k appartiene ad U.

Risposta
$$k = -2$$
 ______(pt.2)

ESERCIZIO 3. Nello spazio vettoriale $\mathbb{R}^4(\mathbb{R})$ si considerino i sottospazi $U = \mathcal{L}([(-1,1,0,k-1),(-2,1,0,k-2),(1-k,k,0,1+k)])$ e $W = \{(2\alpha - 4\gamma,0,\alpha + \beta,\alpha - 2\gamma) \in \mathbb{R}^4 \mid \alpha,\beta,\gamma \in \mathbb{R}\}$. Si determinino al variare di $k \in \mathbb{R}$

ullet la dimensione di U e una sua base;

Risposta
$$k \neq 0 \text{ e } k \neq 2$$
 $\dim U = 3$, $\mathcal{B}_U = ((-1, 1, 0, k - 1), (-2, 1, 0, k - 2), (1 - k, k, 0, 1 + k)),$ $k = 0 \text{ o } k = 2$ $\dim(U) = 2$, $\mathcal{B}_U = ((-1, 1, 0, k - 1), (-2, 1, 0, k - 2))$ (pt.3)

• una base ortonormale di W;

 $\bullet\,$ i valori di kper cui la somma U+Wrisulta diretta;

Risposta
$$k = 0 \circ k = 2$$
 (pt.2)

ullet il complemento ortogonale di W.

Risposta
$$W^{\perp} = \mathcal{L}((1,0,0,-2),(0,1,0,0))$$
 (pt.3)

ESERCIZIO 4. Si consideri la matrice

$$A_k = \begin{pmatrix} k+1 & 1 & 0 \\ 0 & 0 & 0 \\ k+1 & 2 & 1 \end{pmatrix},$$

dove k è un parametro reale. Si determinino, al variare di $k \in \mathbb{R}$:

 \bullet gli autovalori di A_k e le rispettive molteplicità algebriche e geometriche;

Risposta
$$k \neq -1, 0$$
 $\lambda_1 = 0, \lambda_2 = 1, \lambda_3 = k+1, \quad a_{\lambda} = g_{\lambda} = 1$ $k = 0$ $a_1 = 2, g_1 = 1, a_0 = g_0 = 1$ $k = -1$ $a_1 = g_1 = 1, a_0 = 2, g_0 = 1$ (pt.3)

• i valori di $k \in \mathbb{R}$ per cui A_k è diagonalizzabile;

Risposta
$$k \neq -1, 0$$
 ______(pt.2)

• posto k=0 una matrice D diagonale simile ad A_0 e la matrice diagonalizzante P.

 $_{-}$ (pt.3)

UNIVERSITÀ DI BRESCIA - FACOLTÀ DI INGEGNERIA

Algebra e Geometria - 1º test - 19.11.10

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. Si considerino, al variare del parametro reale k, le matrici

$$A = \begin{pmatrix} k & 1 & 0 \\ k+1 & -k & 1 \\ k+2 & 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} k \\ k-2 \\ 0 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

Si determini al variare di $k \in \mathbb{R}$:

• il rango della matrice A;

• il rango della matrice A|B;

- $\bullet\,$ i valori di k per cui il sistema AX=B è compatibile e, per tali valori, il numero delle soluzioni;
- posto k = 1 l'insieme S delle soluzioni di AX = B;

Risposta
$$S = \{(\alpha, 1 - \alpha, -3\alpha) \in \mathbb{R}^3 \mid \alpha \in \mathbb{R}\}$$
 ______ (pt.2)

ESERCIZIO 2. Nello spazio vettoriale $M_2(\mathbb{R})$ si considerino

$$U = \left\{ \begin{pmatrix} x & y \\ z & t \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) \mid y = 0 \quad \text{e} \quad 2x - z - 2t = 0 \right\}, \qquad A_k = \begin{pmatrix} -2 & k+1 \\ 2 & k-2 \end{pmatrix},$$

dove k è un parametro reale. Al variare di $k \in \mathbb{R}$ si determinino:

• una base \mathcal{B} e la dimensione di U;

• i valori di k per cui la matrice A_k appartiene ad U.

Risposta
$$k = -1$$
 ______(pt.2)

ESERCIZIO 3. Nello spazio vettoriale $\mathbb{R}^4(\mathbb{R})$ si considerino i sottospazi $U = \mathcal{L}([(1,0,0,1),(k-2,1-k,0,-2),(k,-k,0,-k)])$ e $W = \{(2\alpha+2\gamma,0,-\alpha-\beta-2\gamma,\alpha+\gamma) \in \mathbb{R}^4 \mid \alpha,\beta,\gamma \in \mathbb{R}\}$. Si determinino al variare di $k \in \mathbb{R}$

 $\bullet \;$ la dimensione di U e una sua base;

Risposta
$$k \neq 0$$
 e $k \neq 2$ dim $U = 3$, $\mathcal{B}_U = ((1,0,0,1), (k-2,1-k,0,-2), (k,-k,0,-k)),$ $k = 0$ o $k = 2$ dim $(U) = 2$, $\mathcal{B}_U = ((1,0,0,1), (k-2,1-k,0,-2))$ (pt.3)

• una base ortonormale di W;

Risposta
$$\mathcal{B}_W = ((0,0,1,0), (2/\sqrt{5},0,0,1/\sqrt{5}))$$
 ______ (pt.2)

 $\bullet\,$ i valori di kper cui la somma U+Wrisulta diretta;

Risposta
$$k = 0 \text{ o } k = 2$$
 ______ (pt.2)

 \bullet il complemento ortogonale di W.

Risposta
$$W^{\perp} = \mathcal{L}((1,0,0,-2),(0,1,0,0))$$
 (pt.3)

ESERCIZIO 4. Si consideri la matrice

$$A_k = \begin{pmatrix} k & k-1 & 1\\ 0 & 1 & 0\\ 0 & k-1 & 2 \end{pmatrix},$$

dove k è un parametro reale. Si determinino, al variare di $k \in \mathbb{R}$:

• gli autovalori di A_k e le rispettive molteplicità algebriche e geometriche;

Risposta $k \neq 1, 2$ $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = k,$ $a_{\lambda} = g_{\lambda} = 1$

$$k = 1$$
 $a_1 = g_1 = 2$, $a_2 = g_2 = 1$
 $k = 2$ $a_1 = g_1 = 1$, $a_2 = 2$, $g_2 = 1$

• i valori di $k \in \mathbb{R}$ per cui A_k è diagonalizzabile;

Risposta
$$k \neq 2$$
 ______(pt.2)

 $\bullet\,$ posto k=1una matrice D diagonale simile ad A_1 e la matrice diagonalizzante P.

Risposta
$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}, P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 (pt.3)