Algebra e Geometria - II prova intermedia - 28.11.07

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA
(0, -2)	0/

ESERCIZIO 1. Si consideri la matrice $A = \begin{pmatrix} 1 & 3 & 0 \\ 3 & 4 & 2 \end{pmatrix}$. Nello spazio vettoriale $\mathbb{R}^3(\mathbb{R})$ con il prodotto

scalare euclideo si determinino:

• gli autovalori della matrice A;

Risposta
$$t_1 = 1, t_2 = 2$$
 _____ (pt.3)

• l'autospazio W relativo all'autovalore minore e una base di W;

Risposta
$$W = \{(-2\alpha, \alpha, 2\alpha) \in \mathbb{R}^3 \mid \alpha \in \mathbb{R}\}, \ B = ((-2, 1, 2))$$
 ______(pt.3)

• Una base ortonormale di W^{\perp} .

Risposta
$$\left(\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}, 0\right), \left(\frac{4}{3\sqrt{5}}, \frac{-2}{3\sqrt{5}}, \frac{\sqrt{5}}{3}\right)\right)$$
 (pt.3)

ESERCIZIO 2. In $E_3(\mathbb{R})$ sono dati i punti P=(-1,0,2) e Q=(1,1,-1), e il piano $\pi:x+y+z-7=0$. Si determinino:

• un'equazione cartesiana della retta r passante per P e ortogonale a π ;

Risposta
$$x - y + 1 = 0 = z - y - 2$$
 _____ (pt.2)

• le coordinate del punto P' proiezione di P sul piano π e del punto P'' simmetrico di P rispetto a π ;

Risposta
$$P' = (1, 2, 4), P'' = (3, 4, 6)$$
 ______ (pt.3)

• un'equazione cartesiana del piano σ passante per P e parallelo a π ;

Risposta
$$x + y + z - 1 = 0$$
 ______ (pt.2)

• un'equazione cartesiana del piano α individuato dalla retta r e dal punto Q.

Risposta
$$4x - 5y + z + 2 = 0$$
 (pt.3)

ESERCIZIO 3. In $E_3(\mathbb{R})$ si considerino le rette $a: \left\{ \begin{array}{l} x+kz=0 \\ y=-1 \end{array} \right.$ e $s: \left\{ \begin{array}{l} x-y=k-1 \\ z=0 \end{array} \right.$ e il piano $\pi : 2x - y + z - 3 = 0.$

• Si determinino i valori del parametro reale k per cui le due rette a ed s sono sghembe.

Risposta
$$k \neq 2$$
 _____ (pt.3)

Posto k = 2, si determinino:

• il punto P di intersezione tra la retta a e il piano π :

Risposta
$$P = (4/3, -1, -2/3)$$
 (pt.2)

 \bullet una rappresentazione cartesiana della retta r passante per P e parallela ad s;

Risposta
$$x - y - 7/3 = 0 = z + 2/3$$
 _____ (pt.2)

Risposta
$$2x^2 - 2y^2 - z^2 - 4xz - 4y - 2 = 0$$
 ______ (pt.4)

_ (pt.3)

UNIVERSITÀ DI BRESCIA - FACOLTÀ DI INGEGNERIA

Algebra e Geometria - II prova intermedia - 28.11.07

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA
ESERCIZIO 1. Si consideri la matrice A prodotto scalare euclideo si determinino:	$A = \begin{pmatrix} 4 & -3 & 0 \\ 6 & -5 & 0 \\ 5 & -2 & -2 \end{pmatrix}$. Nello spazio vettoriale $\mathbb{R}^3(\mathbb{R})$ con il
• gli autovalori della matrice A;	
Risposta $t_1 = -2, t_2 = 1$	(pt.3)
ulletl'autospazio W relativo all'autovalore magg	giore e una base di W ;
Risposta $W = \{(\alpha, \alpha, \alpha) \in \mathbb{R}^3 \mid \alpha \in \mathbb{R}\},\$	B = ((1, 1, 1)) (pt.3)
• Una base ortonormale di W^{\perp} . Risposta $\left(\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right), \left(-\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, 0\right)\right)$	$\sqrt{rac{2}{3}}\Big)\Big)$
ESERCIZIO 2. In $E_3(\mathbb{R})$ sono dati i punti $P=(Si \text{ determinino:}$	$(-2, -1, 1)$ e $Q = (0, 0, -1/2)$, e il piano $\pi : x+y+2z-5 = 0$.
\bullet un'equazione cartesiana della retta r passar	2
Risposta $x - y + 1 = 0 = 2y - z + 3$	(pt.2)
	sul piano π e del punto P'' simmetrico di P rispetto a π ;
Risposta $P' = (-1, 0, 3), P'' = (0, 1, 5)$	(pt.3)
\bullet un'equazione cartesiana del piano σ passan	· · · · · · · · · · · · · · · · · · ·
Risposta $x + y + 2z + 1 = 0$	(pt.2)
\bullet un'equazione cartesiana del piano α individ	
<i>y</i>	(pt.3)
ESERCIZIO 3. In $E_3(\mathbb{R})$ si considerino le ret piano $\pi: 2x - y + 2z - 2 = 0$.	te $a : \begin{cases} x + 2(k-1)z = -1 \\ y = -2 \end{cases}$ e $s : \begin{cases} x - y = k - 2 \\ z = 0 \end{cases}$ e il

• il punto P di intersezione tra la retta a e il piano π ;

Posto k = 0, si determinino:

Risposta

Risposta P = (-1/3, -2, 1/3)) ______ (pt.2)

 $k \neq 3$ _____

 $\bullet\,$ Si determinino i valori del parametro reale k per cui le due rette a ed s sono sghembe.

- una rappresentazione cartesiana della retta r passante per P e parallela ad s; **Risposta** x-y-5/3=0=z-1/3 ______(pt.2)
- un'equazione cartesiana della superficie Γ descritta dalla retta s nella rotazione di asse a. Risposta $2x^2 - 2y^2 - z^2 + 4xz + 16x - 8y + 10z + 24 = 0$ _______(pt.4)

Algebra e Geometria - II prova intermedia - 28.11.07

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. Si consideri la matrice $A = \begin{pmatrix} -4 & -6 & 0 \\ 3 & 5 & 0 \\ 7 & 8 & 2 \end{pmatrix}$. Nello spazio vettoriale $\mathbb{R}^3(\mathbb{R})$ con il prodotto

scalare euclideo si determinino:

• gli autovalori della matrice A;

Risposta
$$t_1 = -1, t_2 = 2$$
 (pt.3)

• l'autospazio W relativo all'autovalore minore e una base di W;

Risposta
$$W = \{(-2\alpha, \alpha, 2\alpha) \in \mathbb{R}^3 \mid \alpha \in \mathbb{R}\}, \ B = ((-2, 1, 2))$$
 ______ (pt.3)

• Una base ortonormale di W^{\perp} .

Risposta
$$\left(\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}, 0\right), \left(\frac{4}{3\sqrt{5}}, \frac{-2}{3\sqrt{5}}, \frac{\sqrt{5}}{3}\right)\right)$$
 ______ (pt.3)

ESERCIZIO 2. In $E_3(\mathbb{R})$ sono dati i punti P=(1,-1,4) e Q=(-1,0,1), e il piano $\pi:x-y-z+8=0$. Si determinino:

 $\bullet\,$ un'equazione cartesiana della retta r passante per Pe ortogonale a $\pi;$

Risposta
$$x + y = 0 = x + z - 5$$
 ______ (pt.2)

• le coordinate del punto P' proiezione di P sul piano π e del punto P'' simmetrico di P rispetto a π ;

Risposta
$$P' = (-1, 1, 6), P'' = (-3, 3, 8)$$
 ______ (pt.3)

 $\bullet\,$ un'equazione cartesiana del piano σ passante per Pe parallelo a $\pi;$

• un'equazione cartesiana del piano α individuato dalla retta r e dal punto Q.

Risposta
$$4x + 5y - z + 5 = 0$$
 ______ (pt.3)

ESERCIZIO 3. In $E_3(\mathbb{R})$ si considerino le rette $a: \begin{cases} -x + kz = 2k \\ y = -2 \end{cases}$ e $s: \begin{cases} x + y = -k \\ z = 0 \end{cases}$ e il piano $\pi: 2x + y - z + 6 = 0$.

ullet Si determinino i valori del parametro reale k per cui le due rette a ed s sono sghembe.

Risposta
$$k \neq -2$$
 ______ (pt.3)

Posto k = 1, si determinino:

• il punto P di intersezione tra la retta a e il piano π ;

Risposta
$$P = (-2, -2, 0)$$
 ______ (pt.2)

 $\bullet\,$ una rappresentazione cartesiana della retta r passante per Pe parallela ad s;

Risposta
$$x + y + 4 = 0 = z$$
 (pt.2)

Risposta
$$x^2 - y^2 + z^2 + 4xz - 2x - 4y + 2z - 3 = 0$$
 _____ (pt.4)

Algebra e Geometria - II prova intermedia - 28.11.07	
COGNOME	NOME
CORSO DI LAUREA	MATRICOLA
	-1 0 4 0 1. Nello spazio vettoriale $\mathbb{R}^3(\mathbb{R})$ con il prodotto
scalare euclideo si determinino:	
• gli autovalori della matrice A;	(pt.3)
1 , 2	(1 /
• l'autospazio W relativo all'autovalore maggior Risposta $W = \{(-\alpha, \alpha, \alpha) \in \mathbb{R}^3 \mid \alpha \in \mathbb{R}\}$	B = ((-1, 1, 1)) (pt.3)
• Una base ortonormale di W^{\perp} .	<i>D</i> = ((1,1,1))
Risposta $\left(\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right), \left(\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \sqrt{\frac{2}{3}}\right)\right)$	
	$(0,1)$ e $Q=(3,-1,-2)$, e il piano $\pi:x-y+z-8=0$.
• un'equazione cartesiana della retta r passante Risposta $x + y - 1 = 0 = y + z - 1$	per P e ortogonale a π ; (pt.2)
	piano π e del punto P'' simmetrico di P rispetto a π ; (pt.3)
• un'equazione cartesiana del piano σ passante passante passante $x-y+z-2=0$	per P e parallelo a π ; (pt.2)
• un'equazione cartesiana del piano α individua Risposta $4x + 5y + z - 5 = 0$	to dalla retta r e dal punto Q . (pt.3)
ESERCIZIO 3. In $E_3(\mathbb{R})$ si considerino le rette $a:$ $\pi: 2x+y+z-6=0.$	$\begin{cases} x + (k+2)z = -k \\ y = 1 \end{cases}$ e $s : \begin{cases} x + y = k+3 \\ z = 0 \end{cases}$ e il piano
• Si determinino i valori del parametro reale k parametro reale $k \neq -1$	per cui le due rette a ed s sono sghembe. (pt.3)
Posto $k = -1$, si determinino:	
• il punto P di intersezione tra la retta a e il pia Risposta $P = (4, 1, -3)$	ano π ; (pt.2)
• una rappresentazione cartesiana della retta r p Risposta $x + y - 5 = 0 = z + 3$	passante per P e parallela ad s ; (pt.2)
	(pt.2)

 $\bullet\,$ un'equazione cartesiana della superficie Γ descritta dalla retta snella rotazione di asse a.

 $x^2 - y^2 + z^2 - 4xz - 2x + 2y + 4z = 0$

Risposta

Algebra e Geometria - II prova intermedia - 28.11.07

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. Si consideri la matrice $A = \begin{pmatrix} -3 & -4 & 0 \\ 2 & 3 & 0 \\ 5 & 6 & 1 \end{pmatrix}$. Nello spazio vettoriale $\mathbb{R}^3(\mathbb{R})$ con il prodotto

scalare euclideo si determinino:

• gli autovalori della matrice A;

Risposta
$$t_1 = -1, t_2 = 1$$
 ______ (pt.3)

• l'autospazio W relativo all'autovalore minore e una base di W;

Risposta
$$W = \{(-2\alpha, \alpha, 2\alpha) \in \mathbb{R}^3 \mid \alpha \in \mathbb{R}\}, \ B = ((-2, 1, 2))$$
 ______ (pt.3)

• Una base ortonormale di W^{\perp} .

Una base ortonormale di
$$W^{\pm}$$
.

Risposta $\left(\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}, 0\right), \left(\frac{4}{3\sqrt{5}}, \frac{-2}{3\sqrt{5}}, \frac{\sqrt{5}}{3}\right)\right)$ _____ (pt.3)

ESERCIZIO 2. In $E_3(\mathbb{R})$ sono dati i punti P=(1,-2,-2) e Q=(-1,-1,1), e il piano $\pi:x-y+z+5=0$. Si determinino:

• un'equazione cartesiana della retta r passante per P e ortogonale a π ;

Risposta
$$x + y + 1 = 0 = x - z - 3$$
 ______(pt.2)

• le coordinate del punto P' proiezione di P sul piano π e del punto P'' simmetrico di P rispetto a π ;

Risposta
$$P' = (-1, 0, -4), P'' = (-3, 2, -6)$$
 ______(pt.3)

 $\bullet\,$ un'equazione cartesiana del piano σ passante per Pe parallelo a $\pi;$

Risposta
$$x - y + z - 1 = 0$$
 ______(pt.2)

• un'equazione cartesiana del piano α individuato dalla retta r e dal punto Q.

Risposta
$$4x + 5y + z + 8 = 0$$
 _____ (pt.3)

ESERCIZIO 3. In $E_3(\mathbb{R})$ si considerino le rette $a: \left\{ \begin{array}{l} x+kz=1 \\ y=-3 \end{array} \right.$ e $s: \left\{ \begin{array}{l} x-y=k+2 \\ z=0 \end{array} \right.$ e il piano $\pi: 2x-y+z-7=0.$

 \bullet Si determinino i valori del parametro reale k per cui le due rette a ed s sono sghembe.

Risposta
$$k \neq 2$$
 _____ (pt.3)

Posto k = 1, si determinino:

• il punto P di intersezione tra la retta a e il piano π ;

Risposta
$$P = (3, -3, -2)$$
 _____ (pt.2)

 \bullet una rappresentazione cartesiana della retta r passante per P e parallela ad s;

Risposta
$$x - y - 6 = 0 = z + 2$$
 ______ (pt.2)

Risposta
$$x^2 - y^2 + z^2 - 4xz - 6y + 2z - 9 = 0$$
 (pt.4)

Algebra e Geometria - II prova intermedia - 28.11.07

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. Si consideri la matrice $A = \begin{pmatrix} -5 & -6 & 0 \\ 3 & 4 & 0 \\ 7 & 8 & 1 \end{pmatrix}$. Nello spazio vettoriale $\mathbb{R}^3(\mathbb{R})$ con il prodotto

scalare euclideo si determinino:

• gli autovalori della matrice A;

Risposta
$$t_1 = -2, t_2 = 1$$
 ______ (pt.3)

• l'autospazio W relativo all'autovalore minore e una base di W;

Risposta
$$W = \{(-2\alpha, \alpha, 2\alpha) \in \mathbb{R}^3 \mid \alpha \in \mathbb{R}\}, B = ((-2, 1, 2))$$
 (pt.3)

• Una base ortonormale di W^{\perp} .

Una base ortonormale di
$$W^{\pm}$$
.

Risposta $\left(\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}, 0\right), \left(\frac{4}{3\sqrt{5}}, \frac{-2}{3\sqrt{5}}, \frac{\sqrt{5}}{3}\right)\right)$ _____ (pt.3)

ESERCIZIO 2. In $E_3(\mathbb{R})$ sono dati i punti P = (0, -2, 2) e Q = (2, -1, -1), e il piano $\pi : x + y + z - 6 = 0$. Si determinino:

• un'equazione cartesiana della retta r passante per P e ortogonale a π ;

Risposta
$$x - y - 2 = 0 = x - z + 2$$
 ______ (pt.2)

• le coordinate del punto P' proiezione di P sul piano π e del punto P'' simmetrico di P rispetto a π ;

Risposta
$$P' = (2,0,4), P'' = (4,2,6)$$
 ______ (pt.3)

• un'equazione cartesiana del piano σ passante per P e parallelo a π ;

Risposta
$$x + y + z = 0$$
 _____ (pt.2)

• un'equazione cartesiana del piano α individuato dalla retta r e dal punto Q.

Risposta
$$4x - 5y + z - 12 = 0$$
 ______ (pt.3)

ESERCIZIO 3. In $E_3(\mathbb{R})$ si considerino le rette $a: \begin{cases} x+(k+1)z=0 \\ y=-3 \end{cases}$ e $s: \begin{cases} x+y=-k-2 \\ z=0 \end{cases}$ e il piano $\pi: 2x+y+z+5=0$.

ullet Si determinino i valori del parametro reale k per cui le due rette a ed s sono sghembe.

Risposta
$$k \neq 1$$
 ______ (pt.3)

Posto k = 0, si determinino:

• il punto P di intersezione tra la retta a e il piano π ;

Risposta
$$P = (-2, -3, 2)$$
 ______ (pt.2)

 $\bullet\,$ una rappresentazione cartesiana della retta r passante per Pe parallela ad s;

Risposta
$$x + y + 5 = 0 = z - 2$$
 (pt.2)

Risposta
$$x^2 - y^2 + z^2 - 4xz - 2x - 6y + 2z - 8 = 0$$
 (pt.4)

Algebra e Geometria - II prova intermedia - 28.11.07

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. Si consideri la matrice $A = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 3 & 0 \\ -3 & 1 & -2 \end{pmatrix}$. Nello spazio vettoriale $\mathbb{R}^3(\mathbb{R})$ con il prodotto

scalare euclideo si determinino:

• gli autovalori della matrice A;

Risposta
$$t_1 = -2, t_2 = 2$$
 _____ (pt.3)

• l'autospazio W relativo all'autovalore maggiore e una base di W;

Risposta
$$W = \{(-\alpha, \alpha, \alpha) \in \mathbb{R}^3 \mid \alpha \in \mathbb{R}\}, B = ((-1, 1, 1))$$
 ______ (pt.3)

• Una base ortonormale di W^{\perp} .

Una base ortonormale di
$$W^{\perp}$$
.
Risposta $\left(\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right), \left(\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \sqrt{\frac{2}{3}}\right)\right)$ _____ (pt.3)

ESERCIZIO 2. In $E_3(\mathbb{R})$ sono dati i punti P=(-1,2,0) e Q=(1,0,-3), e il piano $\pi:2x-y+2z-8=0$. Si determinino:

• un'equazione cartesiana della retta r passante per P e ortogonale a π ;

Risposta
$$x - z + 1 = 0 = 2y + z - 4$$
 ______(pt.2)

• le coordinate del punto P' proiezione di P sul piano π e del punto P'' simmetrico di P rispetto a π ;

Risposta
$$P' = (5/3, 2/3, 8/3), P'' = (13/3, -2/3, 16/3)$$
 (pt.3)

• un'equazione cartesiana del piano σ passante per P e parallelo a π ;

• un'equazione cartesiana del piano α individuato dalla retta r e dal punto Q.

Risposta
$$7x + 10y - 2z - 13 = 0$$
 (pt.3)

ESERCIZIO 3. In $E_3(\mathbb{R})$ si considerino le rette $a: \left\{ \begin{array}{ll} x+kz=3k-1 \\ y=1 \end{array} \right.$ e $s: \left\{ \begin{array}{ll} x+y=k-2 \\ z=0 \end{array} \right.$ e il piano $\pi: 2x + y + z - 4 = 0.$

 \bullet Si determinino i valori del parametro reale k per cui le due rette a ed s sono sghembe.

Risposta
$$k \neq -1$$
 ______(pt.3)

Posto k = 1, si determinino:

• il punto P di intersezione tra la retta a e il piano π ;

Risposta
$$P = (1, 1, 1)$$
 ______ (pt.2)

 \bullet una rappresentazione cartesiana della retta r passante per P e parallela ad s;

Risposta
$$x + y - 2 = 0 = z - 1$$
 ______ (pt.2)

Risposta
$$x^2 - y^2 + z^2 - 4xz + 4x + 2y + 3 = 0$$
 (pt.4)

Algebra e Geometria - II prova intermedia - 28.11.07	
COGNOME	NOME
CORSO DI LAUREA	MATRICOLA
ESERCIZIO 1. Si consideri la matrice $A = \begin{pmatrix} 1 & -1 \\ 1 & 4 \\ 3 & 4 \end{pmatrix}$	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
scalare euclideo si determinino:	
• gli autovalori della matrice A;	
Risposta $t_1 = 2, t_2 = 3$	$\qquad \qquad (\mathrm{pt.3})$
• l'autospazio W relativo all'autovalore minore e	•
	B = ((-2, 1, 2)) (pt.3)
• Una base ortonormale di W^{\perp} . Risposta $\left(\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}, 0\right), \left(\frac{4}{3\sqrt{5}}, \frac{-2}{3\sqrt{5}}, \frac{\sqrt{5}}{3}\right)\right)$	$\qquad \qquad (\mathrm{pt.3})$
ESERCIZIO 2. In $E_3(\mathbb{R})$ sono dati i punti $P=(-4,$ Si determinino:	$(2,-2)$ e $Q=(-2,3,1)$, e il piano $\pi:x+y-z-6=0$.
• un'equazione cartesiana della retta r passante p Risposta $x+z+6=0=y+z$	er P e ortogonale a π ; (pt.2)
	iano π e del punto P'' simmetrico di P rispetto a π ; (pt.3)
\bullet un'equazione cartesiana del piano σ passante pe	
\bullet un'equazione cartesiana del piano α individuato	
ESERCIZIO 3. In $E_3(\mathbb{R})$ si considerino le rette a $\pi: 2x-y-z+5=0.$	
• Si determinino i valori del parametro reale k per Risposta $k \neq 2$	cui le due rette a ed s sono sghembe. (pt.3)
Posto $k = 1$, si determinino:	
• il punto P di intersezione tra la retta a e il pian Risposta $P = (-1, 1, 2)$	o π ; (pt.2)
• una rappresentazione cartesiana della retta r pa Risposta $x-y+2=0=z-2$	ssante per P e parallela ad s ; (pt.2)

 $\bullet\,$ un'equazione cartesiana della superficie Γ descritta dalla retta snella rotazione di asse a.

 $x^2 - y^2 + z^2 + 4xz + 8x + 2y + 14z + 15 = 0$

Risposta

Algebra e Geometria - II prova intermedia - 28.11.07

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. Si consideri la matrice $A = \begin{pmatrix} -7 & 4 & 0 \\ -8 & 5 & 0 \\ -9 & 5 & 1 \end{pmatrix}$. Nello spazio vettoriale $\mathbb{R}^3(\mathbb{R})$ con il prodotto

scalare euclideo si determinino:

• gli autovalori della matrice A;

Risposta
$$t_1 = -3, t_2 = 1$$
 ______ (pt.3)

• l'autospazio W relativo all'autovalore minore e una base di W;

Risposta
$$W = \{(\alpha, \alpha, \alpha) \in \mathbb{R}^3 \mid \alpha \in \mathbb{R}\}, B = ((1, 1, 1))$$
 (pt.3)

• Una base ortonormale di W^{\perp} .

Risposta
$$\left(\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right), \left(-\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \sqrt{\frac{2}{3}}\right)\right)$$
 (pt.3)

ESERCIZIO 2. In $E_3(\mathbb{R})$ sono dati i punti P=(-1,-2,0) e Q=(1,-1,-3), e il piano $\pi:x+y+z-3=0$. Si determinino:

• un'equazione cartesiana della retta r passante per P e ortogonale a π ;

Risposta
$$x - z + 1 = 0 = y - z + 2$$
 ______ (pt.2)

• le coordinate del punto P' proiezione di P sul piano π e del punto P'' simmetrico di P rispetto a π ;

Risposta
$$P' = (1,0,2), P'' = (3,2,4)$$
 ______ (pt.3)

 $\bullet\,$ un'equazione cartesiana del piano σ passante per Pe parallelo a $\pi;$

• un'equazione cartesiana del piano α individuato dalla retta r e dal punto Q.

Risposta
$$4x - 5y + z - 6 = 0$$
 _____ (pt.3)

ESERCIZIO 3. In $E_3(\mathbb{R})$ si considerino le rette $a: \begin{cases} x+kz=-2k \\ y=-2 \end{cases}$ e $s: \begin{cases} x-y=k \\ z=0 \end{cases}$ e il piano $\pi: 2x-y+z-2=0$.

ullet Si determinino i valori del parametro reale k per cui le due rette a ed s sono sghembe.

Risposta
$$k \neq 2/3$$
 _____ (pt.3)

Posto k = 1, si determinino:

• il punto P di intersezione tra la retta a e il piano π ;

Risposta
$$P = (2, -2, -4)$$
 ______ (pt.2)

 $\bullet\,$ una rappresentazione cartesiana della retta r passante per Pe parallela ad s;

Risposta
$$x - y - 4 = 0 = z + 4$$
 ______(pt.2)

Risposta
$$x^2 - y^2 + z^2 - 4xz + 2x - 4y - 6z - 3 = 0$$
 (pt.4)