Algebra e Geometria - 1º appello - 28.11.07

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. Si consideri la matrice $A = \begin{pmatrix} 0 & -2 & 0 \\ 1 & 3 & 0 \\ 3 & 4 & 2 \end{pmatrix}$. Nello spazio vettoriale $\mathbb{R}^3(\mathbb{R})$ con il prodotto

scalare euclideo si determinino:

• gli autovalori della matrice A;

Risposta
$$t_1 = 1, t_2 = 2$$
 _____ (pt.3)

• l'autospazio W relativo all'autovalore minore e una base di W;

Risposta
$$W = \{(-2\alpha, \alpha, 2\alpha) \in \mathbb{R}^3 \mid \alpha \in \mathbb{R}\}, \ B = ((-2, 1, 2))$$
 ______ (pt.3)

• Una base ortonormale di W^{\perp} .

Risposta
$$\left(\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}, 0\right), \left(\frac{4}{3\sqrt{5}}, \frac{-2}{3\sqrt{5}}, \frac{\sqrt{5}}{3}\right)\right)$$
 (pt.3)

ESERCIZIO 2. Si considerino le matrici $A = \begin{pmatrix} 6 & 3 & k \\ 3 & k+3 & 0 \\ -3 & 3 & k \end{pmatrix}$, $B = \begin{pmatrix} 0 \\ 3k+3 \\ 9 \end{pmatrix}$ e $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$. Al variare

del parametro reale k si determinino:

• il rango della matrice A;

Risposta
$$k = 0 \lor k = -3 \ \rho(A) = 2; \ k \neq 0 \land k \neq -3 \ \rho(A) = 3$$
 ______(pt.2)

• il rango della matrice A|B;

Risposta
$$k = 0 \ \rho(A|B) = 2; \ k \neq 0 \ \rho(A|B) = 3$$
 ______ (pt.3)

 \bullet i valori di k per cui il sistema AX = B è compatibile, e per tali valori il numero di soluzioni;

Risposta
$$k = 0 \infty^1$$
 soluzioni; $k \neq 0 \land k \neq -3 \exists !$ soluzione ______ (pt.3)

• interpretando x, y, z come coordinate cartesiane ortogonali in $E_3(\mathbb{R})$, la mutua posizione dei piani rappresentati dalle equazioni del sistema lineare.

Risposta k=0 i piani hanno una retta in comune: appartengono ad un fascio proprio; k=-3 i piani sono a due a due incidenti secondo rette parallele: individuano una stella impropria; $k \neq 0 \land k \neq -3$ i piani hanno un punto comune: individuano una stella propria. (pt.3)

ESERCIZIO 3. In $E_3(\mathbb{R})$ sono dati i punti P=(-1,0,2) e Q=(1,1,-1), e il piano $\pi:x+y+z-7=0$. Si determinino:

• un'equazione cartesiana della retta r passante per P e ortogonale a π ;

Risposta
$$x - y + 1 = 0 = z - y - 2$$
 (pt.2)

• le coordinate del punto P' proiezione di P sul piano π e del punto P'' simmetrico di P rispetto a π ;

Risposta
$$P' = (1, 2, 4), P'' = (3, 4, 6)$$
 ______(pt.3

• un'equazione cartesiana del piano σ passante per P e parallelo a π ;

Risposta
$$4x - 5y + z + 2 = 0$$
 ______ (pt.3)

Algebra e Geometria - 1º appello - 28.11.07

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. Si consideri la matrice $A = \begin{pmatrix} 4 & -3 & 0 \\ 6 & -5 & 0 \\ 5 & -2 & -2 \end{pmatrix}$. Nello spazio vettoriale $\mathbb{R}^3(\mathbb{R})$ con il prodotto

scalare euclideo si determinino:

$$\bullet \;$$
gli autovalori della matrice $A;$

Risposta
$$t_1 = -2, t_2 = 1$$
 ______ (pt.3)

 \bullet l'autospazio W relativo all'autovalore maggiore e una base di W;

Risposta
$$W = \{(\alpha, \alpha, \alpha) \in \mathbb{R}^3 \mid \alpha \in \mathbb{R}\}, B = ((1, 1, 1))$$
 (pt.3)

• Una base ortonormale di W^{\perp} .

Risposta
$$\left(\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right), \left(-\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \sqrt{\frac{2}{3}}\right)\right)$$
 (pt.3)

ESERCIZIO 2. Si considerino le matrici $A = \begin{pmatrix} 2 & 1 & k \\ 1 & k+1 & 0 \\ -1 & 1 & k \end{pmatrix}$, $B = \begin{pmatrix} 0 \\ 3k+1 \\ 3 \end{pmatrix}$ e $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$. Al variare

del parametro reale k si determinino:

• il rango della matrice A;

Risposta
$$k = 0 \lor k = -1 \ \rho(A) = 2; \ k \neq 0 \land k \neq -1 \ \rho(A) = 3$$
 ______ (pt.2)

• il rango della matrice A|B;

Risposta
$$k = 0 \ \rho(A|B) = 2; \ k \neq 0 \ \rho(A|B) = 3$$
 ______ (pt.3)

 \bullet i valori di k per cui il sistema AX = B è compatibile, e per tali valori il numero di soluzioni;

Risposta
$$k = 0 \infty^1$$
 soluzioni; $k \neq 0 \land k \neq -1 \exists !$ soluzione ______ (pt.3)

• interpretando x, y, z come coordinate cartesiane ortogonali in $E_3(\mathbb{R})$, la mutua posizione dei piani rappresentati dalle equazioni del sistema lineare.

Risposta k=0 i piani hanno una retta in comune: appartengono ad un fascio proprio; k=-1 i piani sono a due a due incidenti secondo rette parallele: individuano una stella impropria; $k \neq 0 \land k \neq -1$ i piani hanno un punto comune: individuano una stella propria. (pt.3)

ESERCIZIO 3. In $E_3(\mathbb{R})$ sono dati i punti P=(-2,-1,1) e Q=(0,0,-1/2), e il piano $\pi:x+y+2z-5=0$. Si determinino:

• un'equazione cartesiana della retta r passante per P e ortogonale a π ;

Risposta
$$x - y + 1 = 0 = 2y - z + 3$$
 _____ (pt.2)

- le coordinate del punto P' proiezione di P sul piano π e del punto P'' simmetrico di P rispetto a π ;
- **Risposta** P' = (-1, 0, 3), P'' = (0, 1, 5)
- $\bullet\,$ un'equazione cartesiana del piano σ passante per P e parallelo a $\pi;$

Risposta
$$7x - 11y + 2z + 1 = 0$$
 ______ (pt.3)

Algebra e Geometria - 1º appello - 28.11.07

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. Si consideri la matrice $A = \begin{pmatrix} -4 & -6 & 0 \\ 3 & 5 & 0 \\ 7 & 8 & 2 \end{pmatrix}$. Nello spazio vettoriale $\mathbb{R}^3(\mathbb{R})$ con il prodotto scalare euclideo si determinino:

• gli autovalori della matrice A;

Risposta
$$t_1 = -1, t_2 = 2$$
 _____ (pt.3)

ullet l'autospazio W relativo all'autovalore minore e una base di W;

Risposta
$$W = \{(-2\alpha, \alpha, 2\alpha) \in \mathbb{R}^3 \mid \alpha \in \mathbb{R}\}, B = ((-2, 1, 2))$$
 ______ (pt.3)

• Una base ortonormale di W^{\perp} .

Risposta
$$\left(\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}, 0\right), \left(\frac{4}{3\sqrt{5}}, \frac{-2}{3\sqrt{5}}, \frac{\sqrt{5}}{3}\right)\right)$$
 _____ (pt.3)

ESERCIZIO 2. Si considerino le matrici $A = \begin{pmatrix} 2 & 3 & k+1 \\ 2 & k+3 & -k-1 \\ -1 & 0 & k+1 \end{pmatrix}, B = \begin{pmatrix} 0 \\ 3k+1 \\ 3 \end{pmatrix}$ e $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$. Al

variare del parametro reale k si determinino:

• il rango della matrice A;

Risposta
$$k = -1 \lor k = -2 \rho(A) = 2; k \neq -1 \land k \neq -2 \rho(A) = 3$$
 ______ (pt.2)

• il rango della matrice A|B;

Risposta
$$k = -1 \ \rho(A|B) = 2; \ k \neq -1 \ \rho(A|B) = 3$$
 (pt.3)

 \bullet i valori di k per cui il sistema AX = B è compatibile, e per tali valori il numero di soluzioni;

Risposta
$$k = -1 \infty^1$$
 soluzioni; $k \neq -1 \land k \neq -2 \exists !$ soluzione ______ (pt.3)

• interpretando x, y, z come coordinate cartesiane ortogonali in $E_3(\mathbb{R})$, la mutua posizione dei piani rappresentati dalle equazioni del sistema lineare.

Risposta k = -1 i piani hanno una retta in comune: appartengono ad un fascio proprio; k = -2 i piani sono a due a due incidenti secondo rette parallele: individuano una stella impropria; $k \neq -1 \land k \neq -2$ i piani hanno un punto comune: individuano una stella propria. (pt.3)

ESERCIZIO 3. In $E_3(\mathbb{R})$ sono dati i punti P=(1,-1,4) e Q=(-1,0,1), e il piano $\pi:x-y-z+8=0$. Si determinino:

• un'equazione cartesiana della retta r passante per P e ortogonale a π ;

Risposta
$$x + y = 0 = x + z - 5$$
 _____ (pt.2)

- le coordinate del punto P' proiezione di P sul piano π e del punto P'' simmetrico di P rispetto a π ; **Risposta** P' = (-1, 1, 6), P'' = (-3, 3, 8) (pt.3)
- un'equazione cartesiana del piano σ passante per P e parallelo a π ;

Risposta
$$4x + 5y - z + 5 = 0$$
 ______ (pt.3)

Algebra e Geometria - 1º appello - 28.11.07

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. Si consideri la matrice $A = \begin{pmatrix} 2 & -1 & 0 \\ 1 & 4 & 0 \\ -1 & 1 & 1 \end{pmatrix}$. Nello spazio vettoriale $\mathbb{R}^3(\mathbb{R})$ con il prodotto scalare euclideo si determinino:

• gli autovalori della matrice A;

Risposta
$$t_1 = 1, t_2 = 3$$
 _____ (pt.3)

 \bullet l'autospazio W relativo all'autovalore maggiore e una base di W;

Risposta
$$W = \{(-\alpha, \alpha, \alpha) \in \mathbb{R}^3 \mid \alpha \in \mathbb{R}\}, B = ((-1, 1, 1))$$
 (pt.3)

• Una base ortonormale di W^{\perp} .

Risposta
$$\left(\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right), \left(\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \sqrt{\frac{2}{3}}\right)\right)$$
 (pt.3)

ESERCIZIO 2. Si considerino le matrici $A = \begin{pmatrix} 1 & 2 & 2(k-1) \\ 1 & k & 0 \\ -1 & 1 & k-1 \end{pmatrix}$, $B = \begin{pmatrix} 3 \\ 3k-2 \\ 3 \end{pmatrix}$ e $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$. Al

variare del parametro reale k si determinino:

• il rango della matrice A;

Risposta
$$k = 0 \lor k = 1 \ \rho(A) = 2; \ k \neq 0 \land k \neq 1 \ \rho(A) = 3$$
 _______(pt.2)

• il rango della matrice A|B;

 \bullet i valori di k per cui il sistema AX = B è compatibile, e per tali valori il numero di soluzioni;

Risposta
$$k = 1 \infty^1$$
 soluzioni; $k \neq 0 \land k \neq 1 \exists !$ soluzione ______ (pt.3)

• interpretando x, y, z come coordinate cartesiane ortogonali in $E_3(\mathbb{R})$, la mutua posizione dei piani rappresentati dalle equazioni del sistema lineare.

Risposta k=1 i piani hanno una retta in comune: appartengono ad un fascio proprio; k=0 i piani sono a due a due incidenti secondo rette parallele: individuano una stella impropria; $k \neq 0 \land k \neq 1$ i piani hanno un punto comune: individuano una stella propria. (pt.3)

ESERCIZIO 3. In $E_3(\mathbb{R})$ sono dati i punti P = (1,0,1) e Q = (3,-1,-2), e il piano $\pi : x-y+z-8=0$. Si determinino:

• un'equazione cartesiana della retta r passante per P e ortogonale a π ;

Risposta
$$x + y - 1 = 0 = y + z - 1$$
 _____ (pt.2)

- un'equazione cartesiana del piano σ passante per P e parallelo a π ;

Risposta
$$x - y + z - 2 = 0$$
 _____ (pt.2)

Risposta
$$4x + 5y + z - 5 = 0$$
 _____ (pt.3)

Algebra e Geometria - 1º appello - 28.11.07

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. Si consideri la matrice $A = \begin{pmatrix} -3 & -4 & 0 \\ 2 & 3 & 0 \\ 5 & 6 & 1 \end{pmatrix}$. Nello spazio vettoriale $\mathbb{R}^3(\mathbb{R})$ con il prodotto

scalare euclideo si determinino:

• gli autovalori della matrice A;

Risposta
$$t_1 = -1, t_2 = 1$$
 ______ (pt.3)

• l'autospazio W relativo all'autovalore minore e una base di W;

Risposta
$$W = \{(-2\alpha, \alpha, 2\alpha) \in \mathbb{R}^3 \mid \alpha \in \mathbb{R}\}, B = ((-2, 1, 2))$$
 ______ (pt.3)

• Una base ortonormale di W^{\perp} .

Risposta
$$\left(\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}, 0\right), \left(\frac{4}{3\sqrt{5}}, \frac{-2}{3\sqrt{5}}, \frac{\sqrt{5}}{3}\right)\right)$$
 _____ (pt.3)

ESERCIZIO 2. Si considerino le matrici $A = \begin{pmatrix} 2 & 0 & k+2 \\ 2 & 2k+2 & -k-2 \\ -1 & 3 & k+2 \end{pmatrix}, B = \begin{pmatrix} 0 \\ 3k+4 \\ 3 \end{pmatrix}$ e $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$. Al

variare del parametro reale k si determinino:

• il rango della matrice A;

Risposta
$$k = -2 \lor k = -3 \ \rho(A) = 2; \ k \neq -2 \land k \neq -3 \ \rho(A) = 3$$
 ______ (pt.2)

• il rango della matrice A|B;

Risposta
$$k = -2 \ \rho(A|B) = 2; \ k \neq -2 \ \rho(A|B) = 3$$
 ______ (pt.3)

 \bullet i valori di k per cui il sistema AX = B è compatibile, e per tali valori il numero di soluzioni;

Risposta
$$k = -2 \infty^1$$
 soluzioni; $k \neq -2 \land k \neq -3 \exists !$ soluzione ______ (pt.3)

• interpretando x, y, z come coordinate cartesiane ortogonali in $E_3(\mathbb{R})$, la mutua posizione dei piani rappresentati dalle equazioni del sistema lineare.

Risposta k = -2 i piani hanno una retta in comune: appartengono ad un fascio proprio; k = -3 i piani sono a due a due incidenti secondo rette parallele: individuano una stella impropria; $k \neq -2 \land k \neq -3$ i piani hanno un punto comune: individuano una stella propria. (pt.3)

ESERCIZIO 3. In $E_3(\mathbb{R})$ sono dati i punti P=(1,-2,-2) e Q=(-1,-1,1), e il piano $\pi:x-y+z+5=0$. Si determinino:

• un'equazione cartesiana della retta r passante per P e ortogonale a π ;

Risposta
$$x + y + 1 = 0 = x - z - 3$$
 _____ (pt.2)

- le coordinate del punto P' proiezione di P sul piano π e del punto P'' simmetrico di P rispetto a π ;
 - **Risposta** P' = (-1, 0, -4), P'' = (-3, 2, -6) ______ (pt.3)
- un'equazione cartesiana del piano σ passante per P e parallelo a π ;

Risposta
$$4x + 5y + z + 8 = 0$$
 ______ (pt.3)

Algebra e Geometria - 1º appello - 28.11.07

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. Si consideri la matrice $A = \begin{pmatrix} -5 & -6 & 0 \\ 3 & 4 & 0 \\ 7 & 8 & 1 \end{pmatrix}$. Nello spazio vettoriale $\mathbb{R}^3(\mathbb{R})$ con il prodotto scalare euclideo si determinino:

• gli autovalori della matrice A;

Risposta
$$t_1 = -2, t_2 = 1$$
 ______ (pt.3)

• l'autospazio W relativo all'autovalore minore e una base di W;

Risposta
$$W = \{(-2\alpha, \alpha, 2\alpha) \in \mathbb{R}^3 \mid \alpha \in \mathbb{R}\}, B = ((-2, 1, 2))$$
 (pt.3)

• Una base ortonormale di W^{\perp} .

Risposta
$$\left(\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}, 0\right), \left(\frac{4}{3\sqrt{5}}, \frac{-2}{3\sqrt{5}}, \frac{\sqrt{5}}{3}\right)\right)$$
 (pt.3)

ESERCIZIO 2. Si considerino le matrici $A = \begin{pmatrix} 1 & 2 & 2(k-2) \\ 1 & k-1 & 0 \\ -1 & 1 & k-2 \end{pmatrix}, B = \begin{pmatrix} 3 \\ 3k-5 \\ 3 \end{pmatrix} e X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$ Al

variare del parametro reale k si determinino:

• il rango della matrice A;

Risposta
$$k = 1 \lor k = 2 \ \rho(A) = 2; \ k \neq 1 \land k \neq 2 \ \rho(A) = 3$$
 (pt.2)

• il rango della matrice A|B;

 \bullet i valori di k per cui il sistema AX = B è compatibile, e per tali valori il numero di soluzioni;

• interpretando x, y, z come coordinate cartesiane ortogonali in $E_3(\mathbb{R})$, la mutua posizione dei piani rappresentati dalle equazioni del sistema lineare.

Risposta k=2 i piani hanno una retta in comune: appartengono ad un fascio proprio; k=1 i piani sono a due a due incidenti secondo rette parallele: individuano una stella impropria; $k \neq 1 \land k \neq 2$ i piani hanno un punto comune: individuano una stella propria. (pt.3)

ESERCIZIO 3. In $E_3(\mathbb{R})$ sono dati i punti P=(0,-2,2) e Q=(2,-1,-1), e il piano $\pi:x+y+z-6=0$. Si determinino:

• un'equazione cartesiana della retta r passante per P e ortogonale a π ;

Risposta
$$x - y - 2 = 0 = x - z + 2$$
 ______ (pt.2)

- le coordinate del punto P' proiezione di P sul piano π e del punto P'' simmetrico di P rispetto a π ;
 - **Risposta** P' = (2,0,4), P'' = (4,2,6) ______ (pt.3)
- $\bullet\,$ un'equazione cartesiana del piano σ passante per Pe parallelo a $\pi;$

Risposta
$$x + y + z = 0$$
 ______(pt.2)

Risposta
$$4x - 5y + z - 12 = 0$$
 ______ (pt.3)