UNIVERSITÀ DI BRESCIA - FACOLTÀ DI INGEGNERIA

Algebra e Geometria - 31 08 2009

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. Date le matrici $A_k = \begin{pmatrix} 0 & k & 0 \\ k & 0 & 0 \\ 0 & 0 & k+2 \end{pmatrix}$ e $B_k = \begin{pmatrix} k \\ 3 \\ 0 \end{pmatrix}$, al variare di $k \in \mathbb{R}$, si determinino:

• la dimensione dello spazio $\mathcal{L}(\mathcal{R})$ delle righe di A_k ;

Risposta $k \neq 0, -2$: dim $\mathcal{L}(\mathcal{R})=3$, k = 0: $\dim \mathcal{L}(\mathcal{R}) = 1$, k = -2: $\dim \mathcal{L}(\mathcal{R}) = 2$ _____ (pt.2)

• la dimensione dello spazio delle soluzioni del sistema $A_k X = 0$;

Risposta $k \neq 0, -2$: dimS=0, k = 0: dimS=2, k = -2: dimS=1

• il complemento ortogonale di $\mathcal{L}(\mathcal{R})$, posto k=0, rispetto al prodotto scalare euclideo di \mathbb{R}^3 ;

 $\{(a, b, 0) \in \mathbb{R}^3, a, b \in \mathbb{R}\}$ ____

• i valori di k per i quali $A_k X = B_k$ risulta compatibile;

ullet gli autovalori di A_k con le relative molteplicità algebrica e geometrica e i valori reali di k per i quali A_k risulta diagonalizzabile.

Risposta k, -k, k+2; $k \neq 0, -1$: $m_a(\lambda) = m_g(\lambda) = 1;$ k = 0: $m_a(0) = m_g(0) = 2,$ $m_a(2) = m_g(2) = 1;$ k = -1: $m_a(-1) = m_q(-1) = 1$, $m_a(1) = 2$, $m_q(1) = 2$.

Diagonalizzabile per ogni valore di k ____

Posto k = 1 si determinino:

• le soluzioni di $A_1X = B_1$;

Risposta (3, 1, 0) _____ $_$ (pt.2)

• una base di autovettori di A_1 .

Risposta ((1,1,0),(1,-1,0),(0,0,1)) ____ $_{---}$ (pt.2)

ESERCIZIO 2. In $\tilde{E}_2(\mathbb{C})$ si riconosca la conica generale $\mathcal{C}: 3x^2 + y^2 + 4xy + 2x + 2y - 1 = 0$. Nel caso \mathcal{C} sia una parabola, se ne determinino centro improprio, asse, vertice e tangente nel vertice. Nel caso C sia una conica a centro, se ne determinino punti impropri, assi e centro.

Risposta Iperbole; punti impropri: [(1, -1, 0)], [(1, -3, 0)], assi: $2x - (1 \pm \sqrt{5})y = -3 \mp \sqrt{5},$ centro: (-1, 1). **(pt.4)**

ESERCIZIO 3. In $\tilde{E}_3(\mathbb{C})$ sono dati la retta $r_k: \begin{cases} x+ky+kz=1\\ kx+y+kz=k^2 \end{cases}$ ed il punto P=(2,1,1). Si dica per quali valori reali di k la retta data esiste e per quali è propria

Risposta la retta esiste per $k \neq 1$ ed è propria per $k \neq 1$ \perp (pt.2) Posto k = 0 si determinino rappresentazioni cartesiane

• del piano per P contenente r;

Risposta x - y - 1 = 0 _____ $_{-}$ (pt.2)

• della retta per P incidente r e ad essa ortogonale;

• della superficie generata dalla rotazione dell'asse delle quote attorno ad r. Si dica inoltre, motivando la risposta, di che superficie si tratta.

Risposta $x^2 + y^2 - 2x = 0$;

si tratta di una quadrica semplicemente degenere con punto doppio in Z_{∞} : cilindro con $V=Z_{\infty}$. _____ (pt.4)

UNIVERSITÀ DI BRESCIA - FACOLTÀ DI INGEGNERIA

Algebra e Geometria - 31.08.2009

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. Date le matrici $A_k = \begin{pmatrix} 0 & k+1 & 0 \\ k+1 & 0 & 0 \\ 0 & 0 & k \end{pmatrix}$ e $B_k = \begin{pmatrix} k-1 \\ 0 \\ 1 \end{pmatrix}$, al variare di $k \in \mathbb{R}$, si determinino:

- la dimensione dello spazio $\mathcal{L}(\mathcal{R})$ delle righe di A_k ;
- la dimensione dello spazio delle soluzioni del sistema $A_k X = 0$;

• il complemento ortogonale di $\mathcal{L}(\mathcal{R})$, posto k=-1, rispetto al prodotto scalare euclideo di \mathbb{R}^3 ;

• i valori di k per i quali $A_k X = B_k$ risulta compatibile;

 \bullet gli autovalori di A_k con le relative molteplicità algebrica e geometrica e i valori reali di k per i quali A_k risulta diagonalizzabile.

Posto k = 1 si determinino:

• le soluzioni di $A_1X = B_1$;

• una base di autovettori di A_1 .

Risposta
$$((0,0,1),(1,-1,0),(1,1,0))$$
 ______ (pt.2)

ESERCIZIO 2. In $\tilde{E}_2(\mathbb{C})$ si riconosca la conica generale $\mathcal{C}: 3x^2 + y^2 - 4xy + 4x - 3 = 0$.

Nel caso \mathcal{C} sia una parabola, se ne determinino centro improprio, asse, vertice e tangente nel vertice.

Nel caso C sia una conica a centro, se ne determinino punti impropri, assi e centro.

Risposta Iperbole; punti impropri: $[(1,1,0)], [(1,3,0)], \text{ assi: } (1 \pm \sqrt{5})x - 2y + 6 \mp 2\sqrt{5} = 0, \text{ centro: } (2,4) _ (\textbf{pt.4})$

ESERCIZIO 3. In $\tilde{E}_3(\mathbb{C})$ sono dati la retta $r_k:$ $\begin{cases} x+(k+1)y+(k+1)z=k\\ (k+1)x+y+(k+1)z=1 \end{cases}$ ed il punto P=(1,0,1). Si dica

per quali valori reali di k la retta data esiste e per quali è propr

Risposta la retta esiste per ogni valore di k ed è propria per $k \neq 0$ $\underline{\hspace{1cm}}$ (pt.2)

Posto k = -1 si determinino rappresentazioni cartesiane

• del piano per P contenente r;

Risposta
$$x + 2y - 1 = 0$$
 ______ (pt.2)

• della retta per P incidente r e ad essa ortogonale;

Risposta
$$\begin{cases} x + 2y - 1 = 0 \\ z - 1 = 0 \end{cases}$$
 (pt.3)

• della superficie generata dalla rotazione dell'asse delle quote attorno ad r. Si dica inoltre, motivando la risposta, di che superficie si tratta.

Risposta
$$x^2 + y^2 + 2x - 2y = 0$$
;

si tratta di una quadrica semplicemente degenere con punto doppio in Z_{∞} : cilindro con $V=Z_{\infty}$. _____ (pt.4)

UNIVERSITÀ DI BRESCIA - FACOLTÀ DI INGEGNERIA

Algebra e Geometria - 31.08.2009

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. Date le matrici $A_k = \begin{pmatrix} 0 & k-1 & 0 \\ k-1 & 0 & 0 \\ 0 & 0 & k \end{pmatrix}$ e $B_k = \begin{pmatrix} k+1 \\ 2 \\ 0 \end{pmatrix}$, al variare di $k \in \mathbb{R}$, si determinino:

- la dimensione dello spazio $\mathcal{L}(\mathcal{R})$ delle righe di A_k ;
- la dimensione dello spazio delle soluzioni del sistema $A_k X = 0$;
 - **Risposta** $k \neq 0, 1$: dimS=0, k = 0: dimS=1, k = 1: dimS=2
- il complemento ortogonale di $\mathcal{L}(\mathcal{R})$, posto k=1, rispetto al prodotto scalare euclideo di \mathbb{R}^3 ;

• i valori di k per i quali $A_k X = B_k$ risulta compatibile;

Risposta
$$k \neq 1$$
 _____ (pt.2)

 \bullet gli autovalori di A_k con le relative molteplicità algebrica e geometrica e i valori reali di k per i quali A_k risulta diagonalizzabile.

Posto k = 0 si determinino:

• le soluzioni di $A_0X = B_0$;

• una base di autovettori di A_0 .

Risposta
$$((0,0,1),(1,1,0),(1,-1,0))$$
 ______ (pt.2)

ESERCIZIO 2. In $\tilde{E}_2(\mathbb{C})$ si riconosca la conica generale $\mathcal{C}: x^2 + 2y^2 - 2xy + 2y = 0$.

Nel caso \mathcal{C} sia una parabola, se ne determinino centro improprio, asse, vertice e tangente nel vertice.

Nel caso C sia una conica a centro, se ne determinino punti impropri, assi e centro.

Risposta Ellisse; punti impropri: $[(1 \pm i, 1, 0)]$; assi: $(\pm \sqrt{5} - 1)x - 2y \pm \sqrt{5} - 3 = 0$; centro: (-1, -1) _____ (pt.4)

ESERCIZIO 3. In $\tilde{E}_3(\mathbb{C})$ sono dati la retta $r_k:$ $\begin{cases} x+(k-1)y+(k-1)z=2\\ (k-1)x+y+(k-1)z=0 \end{cases}$ ed il punto P=(0,0,1). Si dica per quali valori reali di k la retta data scieta x.

per quali valori reali di k la retta data esiste e per quali è propr

_____ (pt.2) **Risposta** la retta esiste per ogni valore di k ed è propria per $k \neq 2$

Posto k = 1 si determinino rappresentazioni cartesiane

• del piano per P contenente r;

• della retta per P incidente r e ad essa ortogonale;

Risposta
$$\begin{cases} y = 0 \\ z - 1 = 0 \end{cases}$$
 (pt.3)

• della superficie generata dalla rotazione dell'asse delle quote attorno ad r. Si dica inoltre, motivando la risposta, di che superficie si tratta.

Risposta
$$x^2 + y^2 - 4x = 0$$
:

si tratta di una quadrica semplicemente degenere con punto doppio in Z_{∞} : cilindro con $V=Z_{\infty}$. _____ (pt.4)