UNIVERSITÀ DI BRESCIA - FACOLTÀ DI INGEGNERIA

Algebra e Geometria - 5º appello - 1/9/2015

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. Si consideri il sistema lineare

$$\begin{cases} x + y + kz + (k-1)t = 0 \\ x + (k+1)y - t = k \end{cases}$$

Se ne discuta, al variare di $k \in \mathbb{R}$, la compatibilità, precisando il numero di soluzioni quando risulta compatibile.

Il sistema è compatibile per ogni k. Per $k \neq 0$ il sistema ammette ∞^2 soluzioni. Per k = 0 il sistema ammette ∞^3 soluzioni _ (pt.3)

Posto k = 0 si stabilisca la dimensione e una base dello spazio delle soluzioni.

Risposta dim $S_0 = 3$, B = ((0, 0, 1, 0), (1, 0, 0, 1), (0, 1, 0, 1))_ (pt.3)

ESERCIZIO 2. Data la matrice $A = \begin{pmatrix} 5 & 0 & 0 & 0 \\ 1 & 5 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 1 & 2 \end{pmatrix}$ si stabilisca se il vettore $\begin{pmatrix} 0 \\ -2 \\ 0 \\ 0 \end{pmatrix}$ è un autovettore di A; in caso

affermativo, si determini il relativo autovalore e l'autospazio al quale appartiene.

Risposta Sì, autovalore 5, autospazio $V_5 = \{(0, y, 0, 0) \in \mathbb{R}^4 \mid y \in \mathbb{R}\}$

ESERCIZIO 3. In
$$A_3(\mathbb{R})$$
 si determini una base dello spazio di traslazione dei piani paralleli contenenti le rette: $r: \left\{ \begin{array}{l} x+2=0 \\ y=0 \end{array} \right.$ ed $s: \left\{ \begin{array}{l} 3x-y+z+2=0 \\ -x+2y+z=0 \end{array} \right.$.

Risposta B = ((3,4,0),(0,0,1))

ESERCIZIO 4. In $\widetilde{E}_2(\mathbb{C})$ si determini per quali valori dei parametri $\alpha, \beta \in \mathbb{R}$ la conica $\mathcal{C}: x^2 + y^2 + xy + \alpha x + \beta y + 1 = 0$

• centro nel punto C = (1, 1);

Risposta $\alpha = \beta = -3$ _ (pt.3)

• il punto P=(1,1) e la retta $p:x+y+\frac{2}{3}=0$ come coppia polo-polare.

Risposta $\alpha = \beta = 0$ _ (pt.3)

ESERCIZIO 5. In $\widetilde{A}_3(\mathbb{C})$ sia α il piano di equazione ix + y - (2i + 3)z = i. Determinare un'equazione cartesiana e reale della retta reale di α .

Risposta _ (pt.3)

ESERCIZIO 6. In $\widetilde{E}_3(\mathbb{C})$ si riconosca la quadrica $\mathcal{Q}: (y-1)^2+(z-1)^2-x=0$ stabilendo la natura dei suoi punti semplici.

Risposta Q è un paraboloide ellittico $_$

Determinare, se esistono, un piano α e un piano β tali che $\alpha \cap \mathcal{Q}$ sia una parabola e $\beta \cap \mathcal{Q}$ sia un'iperbole.

Risposta α passa per $P_{\infty} = [(1,0,0,0)]$, ad esempio y = 0; β non esiste. $_{-}$ (pt.4)

UNIVERSITÀ DI BRESCIA - FACOLTÀ DI INGEGNERIA

Algebra e Geometria - 5º appello - 1/9/2015

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. Si consideri il sistema lineare

$$\begin{cases} kx + z + (3-k)t = k-2\\ 2x + (2-k)y + z + t = 0 \end{cases}$$

Se ne discuta, al variare di $k \in \mathbb{R}$, la compatibilità, precisando il numero di soluzioni quando risulta compatibile.

Risposta Il sistema è compatibile per ogni k. Per $k \neq 2$ il sistema ammette ∞^2 soluzioni. Per k = 2 il sistema ammette ∞^3 soluzioni (pt.3)

Posto k=2 si stabilisca la dimensione e una base dello spazio delle soluzioni.

Risposta dim $S_2 = 3$, B = ((0,1,0,0), (1,0,0,-2), (0,0,1,-1)) (pt.3)

ESERCIZIO 2. Data la matrice $A = \begin{pmatrix} 2 & 3 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 5 \end{pmatrix}$ si stabilisca se il vettore $\begin{pmatrix} 0 \\ 0 \\ -3 \\ 0 \end{pmatrix}$ è un autovettore di A; in caso

affermativo, si determini il relativo autovalore e l'autospazio al quale appartiene.

Risposta Sì, autovalore 4, autospazio $V_4 = \{(0,0,z,0) \in \mathbb{R}^4 \mid z \in \mathbb{R}\}$ ______ (pt.4)

ESERCIZIO 3. In $A_3(\mathbb{R})$ si determini una base dello spazio di traslazione dei piani paralleli contenenti le rette:

$$r: \begin{cases} x + 2y + 2z = 0 \\ z + 3 = 0 \end{cases}$$
 ed $s: \begin{cases} 3x + 6y + 1 = 0 \\ y = 0 \end{cases}$.

Risposta B = ((-2, 1, 0), (0, 0, 1))

D = ((-2, 1, 0), (0, 0, 1)) (pt.4)

ESERCIZIO 4. In $\widetilde{E}_2(\mathbb{C})$ si determini per quali valori dei parametri $\alpha, \beta \in \mathbb{R}$ la conica $\mathcal{C}: x^2 + y^2 + \alpha xy + x + \beta y + 1 = 0$ ha:

• centro nel punto C = (1, 1);

Risposta $\alpha = -3, \beta = 1$ ______ (pt.3)

• il punto P = (1,1) e la retta p: 3x + 2y + 3 = 0 come coppia polo-polare.

Risposta $\alpha = \beta = 0$ ______ (pt.3)

ESERCIZIO 5. In $\widetilde{A}_3(\mathbb{C})$ sia α il piano di equazione 2x - (3i+1)y + iz = i. Determinare un'equazione cartesiana e reale della retta reale di α .

Risposta $\begin{cases} 2x - y = 0 \\ 3y - z + 1 = 0 \end{cases}$ (pt.3)

ESERCIZIO 6. In $\widetilde{E}_3(\mathbb{C})$ si riconosca la quadrica \mathcal{Q} : $(x-y)^2 - 2z^2 + 2x + 2y - 1 = 0$ stabilendo la natura dei suoi punti semplici.

Risposta \mathcal{Q} è un paraboloide iperbolico _______ (pt.3)

Determinare, se esistono, un piano α e un piano β tali che $\alpha \cap \mathcal{Q}$ sia un'ellisse e $\beta \cap \mathcal{Q}$ sia una parabola.