Algebra e Geometria - 1º test - 3/11/2017

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. Date le matrici
$$A_k = \begin{pmatrix} -2 & k & 0 & k+1 \\ k+2 & -4 & k-2 & -6 \end{pmatrix}$$
, $B_k = \begin{pmatrix} k-2 \\ 0 \end{pmatrix}$, $X = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$, con $k \in \mathbb{R}$. Si

discuta, al variare di $k \in \mathbb{R}$, la compatibilità del sistema $A_k X = B_k$, precisando il numero di soluzioni qualora il sistema sia compatibile.

- l'insieme S delle soluzioni del sistema e si dica, motivando la risposta, se tale insieme è un sottospazio vettoriale di \mathbb{R}^4 ; **Risposta** $S = \{(\alpha, \beta, -5\alpha - 2\beta + 6, 2\alpha - 2) \in \mathbb{R}^4 \mid \alpha, \beta \in \mathbb{R}\}$ non è un sottospazio di \mathbb{R}^4 perché il sistema non è omogeneo (pt.3)
- una base di $\mathcal{L}(S)$.

Risposta ((1,0,-5,2),(0,1,-2,0),(0,0,3,-1)) _______(**pt.2**)

ESERCIZIO 2. In $M_3(\mathbb{R})$ è data la matrice $A_k = \begin{pmatrix} 2 & k & 3-k \\ 0 & -1 & 0 \\ 0 & k-2 & k-1 \end{pmatrix}$ con $k \in \mathbb{R}$. Si determinino:

• gli autovalori di A_k ;

Risposta -1, 2, k-1 ______(pt.1)

• i valori di $k \in \mathbb{R}$ per i quali gli autovalori di A_k sono distinti;

Risposta $k \neq 0,3$ ______(pt.1)

• i valori di $k \in \mathbb{R}$ per cui la matrice A_k è diagonalizzabile.

Risposta $k \neq 0$ ______(pt.2)

Posto k=3, si determinino una matrice diagonale D simile ad A_3 e la relativa matrice diagonalizzante P.

Risposta $D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}, P = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 0 & -3 \\ 0 & 1 & 1 \end{pmatrix}$ (pt.3)

ESERCIZIO 3. In $M_3(\mathbb{R})$ sono date le matrici $A=\begin{pmatrix}2&1&0\\0&-1&1\\0&-2&0\end{pmatrix}$ e $B_h=\begin{pmatrix}h&0&\frac{1}{4}\\0&0&-\frac{1}{2}\\0&2h&-h\end{pmatrix}$ con $h\in\mathbb{R}$. Si dica, motivando

ESERCIZIO 4. In $\mathbb{R}^4(\mathbb{R})$ si determini, se esiste, una combinazione lineare dei vettori $v_1 = (1,0,1,0), v_2 = (0,2,0,-1),$

ESERCIZIO 5. In $\mathbb{R}^3(\mathbb{R})$ si dica per quali valori reali del parametro k il vettore v = (0, k, -9) appartiene alla chiusura lineare di $S = \{(1, 2, 4), (0, -1, 3)\}.$

Risposta k=3 _______(pt.3)

ESERCIZIO 6. Si determini, se esiste, una base \mathcal{B} di $\mathbb{R}^4(\mathbb{R})$ rispetto alla quale il vettore v = (6, -4, 0, 5) ha componenti (0, 0, 0, 2).

Risposta $\mathcal{B} = ((1,0,0,0), (0,1,0,0), (0,0,1,0), (3,-2,0,\frac{5}{2}))$ (pt.2)

ESERCIZIO 7. In $\mathbb{R}^4(\mathbb{R})$ si determini, se esiste, un sistema di generatori di $U = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y - 3t = 7\}$. Nel caso non sia possibile, si giustifichi la risposta.

Si determini il complemento ortogonale di $\mathcal{L}(U)$ rispetto al prodotto scalare euclideo.

Algebra e Geometria - 1º test - 3/11/2017

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. Date le matrici
$$A_k = \begin{pmatrix} -2 & k-1 & 0 & k-2 \\ k & -6 & k-4 & -4 \end{pmatrix}$$
, $B_k = \begin{pmatrix} 0 \\ k-4 \end{pmatrix}$, $X = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$, con $k \in \mathbb{R}$. Si

discuta, al variare di $k \in \mathbb{R}$, la compatibilità del sistema $A_k X = B_k$, precisando il numero di soluzioni qualora il sistema sia compatibile.

- l'insieme S delle soluzioni del sistema e si dica, motivando la risposta, se tale insieme è un sottospazio vettoriale di \mathbb{R}^4 ; **Risposta** $S = \{(\alpha, 2\alpha, -5\alpha - 2\beta + 1, \beta) \in \mathbb{R}^4 \mid \alpha, \beta \in \mathbb{R}\}$ non è un sottospazio di \mathbb{R}^4 perché il sistema non è omogeneo (pt.3)
- una base di $\mathcal{L}(S)$.

Risposta ((1,2,-5,0),(0,0,-2,1),(0,0,1,0)) ______(**pt.2**)

ESERCIZIO 2. In $M_3(\mathbb{R})$ è data la matrice $A_k = \begin{pmatrix} -1 & 0 & 0 \\ k+2 & 4 & 3-k \\ k & 0 & k+1 \end{pmatrix}$ con $k \in \mathbb{R}$. Si determinino:

• gli autovalori di A_k ;

Risposta -1, 4, k+1 ______(pt.1)

• i valori di $k \in \mathbb{R}$ per i quali gli autovalori di A_k sono distinti;

Risposta $k \neq -2,3$ _____ (pt.1)

 $\bullet\,$ i valori di $k\in\mathbb{R}$ per cui la matrice A_k è diagonalizzabile.

Risposta $k \neq -2$ ______(pt.2)

Posto k=3, si determinino una matrice diagonale D simile ad A_3 e la relativa matrice diagonalizzante P.

Risposta $D = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -1 \end{pmatrix}, P = \begin{pmatrix} 0 & 0 & -5 \\ 1 & 0 & 5 \\ 0 & 1 & 3 \end{pmatrix}$ (pt.3)

ESERCIZIO 3. In $M_3(\mathbb{R})$ sono date le matrici $A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & -2 & 0 \end{pmatrix}$ e $B_h = \begin{pmatrix} -2h & 0 & \frac{1}{4} \\ 0 & 0 & -\frac{1}{2} \\ 0 & -4h & 2h \end{pmatrix}$ con $h \in \mathbb{R}$. Si dica,

motivando la risposta, se A è invertibile. In tal caso si determinino, se esistono, i valori di $h \in \mathbb{R}$ per i quali B_h è l'inversa di A.

Risposta A è invertibile perché ha determinante non nullo; $h = -\frac{1}{4}$ ______ (pt.3)

ESERCIZIO 4. In $\mathbb{R}^4(\mathbb{R})$ si determini, se esiste, una combinazione lineare dei vettori $v_1 = (1, 1, 0, 2), v_2 = (1, 0, 0, 0), v_3 = (0, -3, 4, 0), v_4 = (1, 2, 0, 4)$ a coefficienti non tutti nulli che dà il vettore nullo.

ESERCIZIO 5. In $\mathbb{R}^3(\mathbb{R})$ si dica per quali valori reali del parametro k il vettore v=(0,k,-8) appartiene alla chiusura lineare di $S=\{(1,2,4),(0,-1,4)\}$.

Risposta k=2 _______(pt.3)

ESERCIZIO 6. Si determini, se esiste, una base \mathcal{B} di $\mathbb{R}^4(\mathbb{R})$ rispetto alla quale il vettore v = (1, 0, -2, 6) ha componenti (0, 0, 0, 2).

Risposta $\mathcal{B} = ((1,0,0,0), (0,1,0,0), (0,0,1,0), (\frac{1}{2},0,-1,3))$ (pt.2)

ESERCIZIO 7. In $\mathbb{R}^4(\mathbb{R})$ si determini, se esiste, un sistema di generatori di $U = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + 3y - t = 4\}$. Nel caso non sia possibile, si giustifichi la risposta.

Si determini il complemento ortogonale di $\mathcal{L}(U)$ rispetto al prodotto scalare euclideo.

Algebra e Geometria - 1º test - 3/11/2017

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. Date le matrici
$$A_k = \begin{pmatrix} k-1 & -2 & 0 & k \\ -4 & k+1 & k-3 & -6 \end{pmatrix}$$
, $B_k = \begin{pmatrix} k-3 \\ 0 \end{pmatrix}$, $X = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$, con $k \in \mathbb{R}$. Si

discuta, al variare di $k \in \mathbb{R}$, la compatibilità del sistema $A_k X = B_k$, precisando il numero di soluzioni qualora il sistema sia compatibile.

- l'insieme S delle soluzioni del sistema e si dica, motivando la risposta, se tale insieme è un sottospazio vettoriale di \mathbb{R}^4 ; **Risposta** $S = \{(\alpha, \beta, -2\alpha - 5\beta + 6, 2\beta - 2) \in \mathbb{R}^4 \mid \alpha, \beta \in \mathbb{R}\}$ non è un sottospazio di \mathbb{R}^4 perché il sistema non è omogeneo (pt.3)
- una base di $\mathcal{L}(S)$.

Risposta ((0,1,-5,2),(1,0,-2,0),(0,0,3,-1)) ______(**pt.2**)

ESERCIZIO 2. In $M_3(\mathbb{R})$ è data la matrice $A_k = \begin{pmatrix} 2 & -k & k+3 \\ 0 & k+2 & k+1 \\ 0 & 0 & -1 \end{pmatrix}$ con $k \in \mathbb{R}$. Si determinino:

• gli autovalori di A_k ;

Risposta -1, 2, k+2 ______(pt.1)

• i valori di $k \in \mathbb{R}$ per i quali gli autovalori di A_k sono distinti;

Risposta $k \neq -3,0$ ______(pt.1)

 $\bullet\,$ i valori di $k\in\mathbb{R}$ per cui la matrice A_k è diagonalizzabile.

Risposta $k \neq -3$ ______(pt.2)

Posto k=0, si determinino una matrice diagonale D simile ad A_0 e la relativa matrice diagonalizzante P.

Risposta $D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}, P = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & -3 \end{pmatrix}$ (pt.3)

ESERCIZIO 3. In $M_3(\mathbb{R})$ sono date le matrici $A=\begin{pmatrix}2&1&0\\0&-1&1\\0&-2&0\end{pmatrix}$ e $B_h=\begin{pmatrix}4h&0&2h\\0&0&-\frac{1}{2}\\0&8h&-\frac{1}{2}\end{pmatrix}$ con $h\in\mathbb{R}$. Si dica, motivando

la risposta, se A è invertibile. In tal caso si determinino, se esistono, i valori di $h \in \mathbb{R}$ per i quali B_h è l'inversa di A.

ESERCIZIO 4. In $\mathbb{R}^4(\mathbb{R})$ si determini, se esiste, una combinazione lineare dei vettori $v_1 = (3, 6, 1, 6), v_2 = (3, 0, 1, 0), v_3 = (0, 2, 0, 2), v_4 = (-1, 2, 0, 1)$ a coefficienti non tutti nulli che dà il vettore nullo.

Risposta $-v_1 + v_2 + 3v_3 + 0v_4$ (pt.2)

ESERCIZIO 5. In $\mathbb{R}^3(\mathbb{R})$ si dica per quali valori reali del parametro k il vettore v = (0, k, 8) appartiene alla chiusura lineare di $S = \{(1, 2, 4), (0, -1, 1)\}.$

Risposta k = -8 ______(pt.3)

ESERCIZIO 6. Si determini, se esiste, una base \mathcal{B} di $\mathbb{R}^4(\mathbb{R})$ rispetto alla quale il vettore v = (0, 3, -4, 2) ha componenti (0, 0, 0, 2).

Risposta $\mathcal{B} = ((1,0,0,0), (0,1,0,0), (0,0,1,0), (0,\frac{3}{2},-2,1))$ (pt.2)

ESERCIZIO 7. In $\mathbb{R}^4(\mathbb{R})$ si determini, se esiste, un sistema di generatori di $U = \{(x, y, z, t) \in \mathbb{R}^4 \mid 2x + y - 3t = 5\}$. Nel caso non sia possibile, si giustifichi la risposta.

Si determini il complemento ortogonale di $\mathcal{L}(U)$ rispetto al prodotto scalare euclideo.

Algebra e Geometria - 1º test - 3/11/2017

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. Date le matrici
$$A_k = \begin{pmatrix} k+5 & -2 & 0 & k+4 \\ -6 & k+6 & k+2 & -4 \end{pmatrix}$$
, $B_k = \begin{pmatrix} 0 \\ k+2 \end{pmatrix}$, $X = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$, con $k \in \mathbb{R}$. Si

discuta, al variare di $k \in \mathbb{R}$, la compatibilità del sistema $A_k X = B_k$, precisando il numero di soluzioni qualora il sistema sia compatibile.

Risposta Compatibile $\forall k \in \mathbb{R}$; $k \neq -2$ ∞^2 soluz., k = -2 ∞^3 soluz. (pt.3) Posto k = -4 si determinino:

- l'insieme S delle soluzioni del sistema e si dica, motivando la risposta, se tale insieme è un sottospazio vettoriale di \mathbb{R}^4 ; **Risposta** $S = \{(2\alpha, \alpha, -5\alpha - 2\beta + 1, \beta) \in \mathbb{R}^4 \mid \alpha, \beta \in \mathbb{R}\}$ non è un sottospazio di \mathbb{R}^4 perché il sistema non è omogeneo (pt.3)
- una base di $\mathcal{L}(S)$.

Risposta ((2,1,-5,0),(0,0,-2,1),(0,0,1,0)) ______(**pt.2**)

ESERCIZIO 2. In $M_3(\mathbb{R})$ è data la matrice $A_k = \begin{pmatrix} -3 & k & -2 - k \\ 0 & -2 & 0 \\ 0 & k - 2 & k - 1 \end{pmatrix}$ con $k \in \mathbb{R}$. Si determinino:

• gli autovalori di A_k ;

Risposta -3, -2, k-1 ______(pt.1)

• i valori di $k \in \mathbb{R}$ per i quali gli autovalori di A_k sono distinti;

Risposta $k \neq -2, -1$ ______ (pt.1)

 $\bullet\,$ i valori di $k\in\mathbb{R}$ per cui la matrice A_k è diagonalizzabile.

Risposta $k \neq -1$ ______(pt.2)

Posto k = -2, si determinino una matrice diagonale D simile ad A_{-2} e la relativa matrice diagonalizzante P.

Risposta $D = \begin{pmatrix} -3 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -2 \end{pmatrix}, P = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 0 & -1 \\ 0 & 1 & 4 \end{pmatrix}$ (pt.3)

ESERCIZIO 3. In $M_3(\mathbb{R})$ sono date le matrici $A=\begin{pmatrix}2&1&0\\0&-1&1\\0&-2&0\end{pmatrix}$ e $B_h=\begin{pmatrix}\frac{h}{2}&0&\frac{1}{4}\\0&0&-\frac{1}{2}\\0&h&-\frac{h}{2}\end{pmatrix}$ con $h\in\mathbb{R}$. Si dica, motivando

la risposta, se A è invertibile. In tal caso si determinino, se esistono, i valori di $h \in \mathbb{R}$ per i quali B_h è l'inversa di A.

ESERCIZIO 4. In $\mathbb{R}^4(\mathbb{R})$ si determini, se esiste, una combinazione lineare dei vettori $v_1 = (1,0,1,0), v_2 = (0,5,-7,10), v_3 = (0,2,0,-1), v_4 = (1,2,1,-1)$ a coefficienti non tutti nulli che dà il vettore nullo.

ESERCIZIO 5. In $\mathbb{R}^3(\mathbb{R})$ si dica per quali valori reali del parametro k il vettore v = (0, k, -8) appartiene alla chiusura lineare di $S = \{(1, 2, 4), (0, -1, 2)\}.$

ESERCIZIO 6. Si determini, se esiste, una base \mathcal{B} di $\mathbb{R}^4(\mathbb{R})$ rispetto alla quale il vettore v = (0, 6, -4, 5) ha componenti (0, 0, 0, 2).

Risposta $\mathcal{B} = ((1,0,0,0), (0,1,0,0), (0,0,1,0), (0,3,-2,\frac{5}{2}))$ (pt.2)

ESERCIZIO 7. In $\mathbb{R}^4(\mathbb{R})$ si determini, se esiste, un sistema di generatori di $U = \{(x, y, z, t) \in \mathbb{R}^4 \mid 2x + 2y - t = 9\}$. Nel caso non sia possibile, si giustifichi la risposta.

Si determini il complemento ortogonale di $\mathcal{L}(U)$ rispetto al prodotto scalare euclideo.

Algebra e Geometria - 1º test - 3/11/2017

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. Date le matrici
$$A_k = \begin{pmatrix} 0 & k-3 & -2 & k-2 \\ k-5 & -4 & k-1 & -6 \end{pmatrix}$$
, $B_k = \begin{pmatrix} k-5 \\ 0 \end{pmatrix}$, $X = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$, con $k \in \mathbb{R}$. Si

discuta, al variare di $k \in \mathbb{R}$, la compatibilità del sistema $A_k X = B_k$, precisando il numero di soluzioni qualora il sistema sia compatibile.

- l'insieme S delle soluzioni del sistema e si dica, motivando la risposta, se tale insieme è un sottospazio vettoriale di \mathbb{R}^4 ; **Risposta** $S = \{(-5\alpha - 2\beta + 6, \beta, \alpha, 2\alpha - 2) \in \mathbb{R}^4 \mid \alpha, \beta \in \mathbb{R}\}$ non è un sottospazio di \mathbb{R}^4 perché il sistema non è omogeneo (pt.3)
- una base di $\mathcal{L}(S)$.

Risposta ((-5,0,1,2),(-2,1,0,0),(3,0,0,-1)) ______ (pt.2)

ESERCIZIO 2. In $M_3(\mathbb{R})$ è data la matrice $A_k = \begin{pmatrix} 4 & 6-k & k-1 \\ 0 & k-2 & k-3 \\ 0 & 0 & -1 \end{pmatrix}$ con $k \in \mathbb{R}$. Si determinino:

• gli autovalori di A_k ;

Risposta -1, 4, k-2 ______(pt.1)

• i valori di $k \in \mathbb{R}$ per i quali gli autovalori di A_k sono distinti;

Risposta $k \neq 1, 6$ _____ (pt.1)

 $\bullet\,$ i valori di $k\in\mathbb{R}$ per cui la matrice A_k è diagonalizzabile.

Risposta $k \neq 1$ ______ (pt.2)

Posto k = 6, si determinino una matrice diagonale D simile ad A_6 e la relativa matrice diagonalizzante P.

Risposta $D = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -1 \end{pmatrix}, P = \begin{pmatrix} 1 & 0 & 5 \\ 0 & 1 & 3 \\ 0 & 0 & -5 \end{pmatrix}$ (pt.3)

ESERCIZIO 3. In $M_3(\mathbb{R})$ sono date le matrici $A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & -2 & 0 \end{pmatrix}$ e $B_h = \begin{pmatrix} 8h & 0 & 4h \\ 0 & 0 & -\frac{1}{2} \\ 0 & 16h & -\frac{1}{2} \end{pmatrix}$ con $h \in \mathbb{R}$. Si dica, motivando

la risposta, se A è invertibile. In tal caso si determinino, se esistono, i valori di $h \in \mathbb{R}$ per i quali B_h è l'inversa di A.

Risposta A è invertibile perché ha determinante non nullo; $h = \frac{1}{16}$ ______ (pt.3)

ESERCIZIO 4. In $\mathbb{R}^4(\mathbb{R})$ si determini, se esiste, una combinazione lineare dei vettori $v_1 = (1,0,0,0), v_2 = (1,2,0,4), v_3 = (1,1,0,2), v_4 = (0,-3,4,0)$ a coefficienti non tutti nulli che dà il vettore nullo.

Risposta $v_1 + v_2 - 2v_3 + 0v_4$ (pt.2)

ESERCIZIO 5. In $\mathbb{R}^3(\mathbb{R})$ si dica per quali valori reali del parametro k il vettore v = (0, 3k, -9) appartiene alla chiusura lineare di $S = \{(1, 2, 4), (0, -1, 3)\}.$

Risposta k=1 ______(pt.3)

ESERCIZIO 6. Si determini, se esiste, una base \mathcal{B} di $\mathbb{R}^4(\mathbb{R})$ rispetto alla quale il vettore v = (1, -2, 0, 6) ha componenti (0, 0, 0, 2).

Risposta
$$\mathcal{B} = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(\frac{1}{2},-1,0,3))$$
 (pt.2)

ESERCIZIO 7. In $\mathbb{R}^4(\mathbb{R})$ si determini, se esiste, un sistema di generatori di $U = \{(x, y, z, t) \in \mathbb{R}^4 \mid x - 3y + t = 2\}$. Nel caso non sia possibile, si giustifichi la risposta.

Si determini il complemento ortogonale di $\mathcal{L}(U)$ rispetto al prodotto scalare euclideo.

Algebra e Geometria - 1º test - 3/11/2017

COGNOME	NOME
CORSO DI LAUREA	MATRICOLA

ESERCIZIO 1. Date le matrici
$$A_k = \begin{pmatrix} 0 & k-3 & -2 & k-4 \\ k-6 & -6 & k-2 & -4 \end{pmatrix}$$
, $B_k = \begin{pmatrix} 0 \\ k-6 \end{pmatrix}$, $X = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$, con $k \in \mathbb{R}$. Si

discuta, al variare di $k \in \mathbb{R}$, la compatibilità del sistema $A_k X = B_k$, precisando il numero di soluzioni qualora il sistema sia compatibile.

- l'insieme S delle soluzioni del sistema e si dica, motivando la risposta, se tale insieme è un sottospazio vettoriale di \mathbb{R}^4 ; **Risposta** $S = \{(-5\alpha - 2\beta + 1, 2\alpha, \alpha, \beta) \in \mathbb{R}^4 \mid \alpha, \beta \in \mathbb{R}\}$ non è un sottospazio di \mathbb{R}^4 perché il sistema non è omogeneo (pt.3)
- una base di $\mathcal{L}(S)$.

Risposta ((-5,2,1,0),(-2,0,0,1),(1,0,0,0)) ______(pt.2)

ESERCIZIO 2. In $M_3(\mathbb{R})$ è data la matrice $A_k = \begin{pmatrix} -3 & -3-k & k+1 \\ 0 & k & k-1 \\ 0 & 0 & -2 \end{pmatrix}$ con $k \in \mathbb{R}$. Si determinino:

• gli autovalori di A_k ;

Risposta -3, -2, k ______(pt.1)

• i valori di $k \in \mathbb{R}$ per i quali gli autovalori di A_k sono distinti;

Risposta $k \neq -3, -2$ ______ (pt.1)

 $\bullet\,$ i valori di $k\in\mathbb{R}$ per cui la matrice A_k è diagonalizzabile.

Risposta $k \neq -2$ ______(pt.2)

Posto k = -3, si determinino una matrice diagonale D simile ad A_{-3} e la relativa matrice diagonalizzante P.

Risposta
$$D = \begin{pmatrix} -3 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -2 \end{pmatrix}, P = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 4 \\ 0 & 0 & -1 \end{pmatrix}$$
 (pt.3)

ESERCIZIO 3. In $M_3(\mathbb{R})$ sono date le matrici $A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & -2 & 0 \end{pmatrix}$ e $B_h = \begin{pmatrix} -h & 0 & \frac{1}{4} \\ 0 & 0 & -\frac{1}{2} \\ 0 & -2h & h \end{pmatrix}$ con $h \in \mathbb{R}$. Si dica,

motivando la risposta, se A è invertibile. In tal caso si determinino, se esistono, i valori di $h \in \mathbb{R}$ per i quali B_h è l'inversa di A.

Risposta A è invertibile perché ha determinante non nullo; $h = -\frac{1}{2}$ (pt.3)

ESERCIZIO 4. In $\mathbb{R}^4(\mathbb{R})$ si determini, se esiste, una combinazione lineare dei vettori $v_1 = (-1, 2, 0, 1), v_2 = (3, 0, 1, 0), v_3 = (3, 6, 1, 6), v_4 = (0, 2, 0, 2)$ a coefficienti non tutti nulli che dà il vettore nullo.

Risposta $0v_1 + v_2 - v_3 + 3v_4$ _______(pt.2)

ESERCIZIO 5. In $\mathbb{R}^3(\mathbb{R})$ si dica per quali valori reali del parametro k il vettore v = (0, k, 8) appartiene alla chiusura lineare di $S = \{(1, 2, 4), (0, -1, 4)\}.$

Risposta k = -2 ______(pt.3)

ESERCIZIO 6. Si determini, se esiste, una base \mathcal{B} di $\mathbb{R}^4(\mathbb{R})$ rispetto alla quale il vettore v = (2, -4, 0, 3) ha componenti (0, 0, 0, 2).

Risposta $\mathcal{B} = ((1,0,0,0), (0,1,0,0), (0,0,1,0), (1,-2,0,\frac{3}{2}))$ _______(**pt.2**)

ESERCIZIO 7. In $\mathbb{R}^4(\mathbb{R})$ si determini, se esiste, un sistema di generatori di $U = \{(x, y, z, t) \in \mathbb{R}^4 \mid -2x + y - 5t = 1\}$. Nel caso non sia possibile, si giustifichi la risposta.

Si determini il complemento ortogonale di $\mathcal{L}(U)$ rispetto al prodotto scalare euclideo.